BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31771025)

  • 1. Minimal model for slow, sub-Rayleigh, supershear, and unsteady rupture propagation along homogeneously loaded frictional interfaces.
    Thøgersen K; Sveinsson HA; Amundsen DS; Scheibert J; Renard F; Malthe-Sørenssen A
    Phys Rev E; 2019 Oct; 100(4-1):043004. PubMed ID: 31771025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The equation of motion for supershear frictional rupture fronts.
    Kammer DS; Svetlizky I; Cohen G; Fineberg J
    Sci Adv; 2018 Jul; 4(7):eaat5622. PubMed ID: 30035229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speed of fast and slow rupture fronts along frictional interfaces.
    Trømborg JK; Sveinsson HA; Thøgersen K; Scheibert J; Malthe-Sørenssen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012408. PubMed ID: 26274187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces.
    Trømborg JK; Sveinsson HA; Scheibert J; Thøgersen K; Amundsen DS; Malthe-Sørenssen A
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8764-9. PubMed ID: 24889640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of slip-pulses and supershear ruptures driving slip in bimaterial friction.
    Shlomai H; Fineberg J
    Nat Commun; 2016 Jun; 7():11787. PubMed ID: 27278687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instabilities at frictional interfaces: creep patches, nucleation, and rupture fronts.
    Bar-Sinai Y; Spatschek R; Brener EA; Bouchbinder E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):060403. PubMed ID: 24483372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces.
    Amundsen DS; Trømborg JK; Thøgersen K; Katzav E; Malthe-Sørenssen A; Scheibert J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032406. PubMed ID: 26465481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation.
    Bar-Sinai Y; Spatschek R; Brener EA; Bouchbinder E
    Sci Rep; 2015 Jan; 5():7841. PubMed ID: 25598161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The onset of the frictional motion of dissimilar materials.
    Shlomai H; Kammer DS; Adda-Bedia M; Fineberg J
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13379-13385. PubMed ID: 32482877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal model for the onset of slip pulses in frictional rupture.
    Thøgersen K; Aharonov E; Barras F; Renard F
    Phys Rev E; 2021 May; 103(5-1):052802. PubMed ID: 34134208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of the shear stress peak radiated ahead of rapidly accelerating rupture fronts that mediate frictional slip.
    Svetlizky I; Pino Muñoz D; Radiguet M; Kammer DS; Molinari JF; Fineberg J
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):542-7. PubMed ID: 26729877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classical shear cracks drive the onset of dry frictional motion.
    Svetlizky I; Fineberg J
    Nature; 2014 May; 509(7499):205-8. PubMed ID: 24805344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow cracklike dynamics at the onset of frictional sliding.
    Bouchbinder E; Brener EA; Barel I; Urbakh M
    Phys Rev Lett; 2011 Dec; 107(23):235501. PubMed ID: 22182097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition from sub-Rayleigh anticrack to supershear crack propagation in snow avalanches.
    Trottet B; Simenhois R; Bobillier G; Bergfeld B; van Herwijnen A; Jiang C; Gaume J
    Nat Phys; 2022; 18(9):1094-1098. PubMed ID: 36097630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition.
    Xia K; Rosakis AJ; Kanamori H
    Science; 2004 Mar; 303(5665):1859-61. PubMed ID: 15031503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How collective asperity detachments nucleate slip at frictional interfaces.
    de Geus TWJ; Popović M; Ji W; Rosso A; Wyart M
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):23977-23983. PubMed ID: 31699820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics of unsteady frictional slip pulses.
    Pomyalov A; Barras F; Roch T; Brener EA; Bouchbinder E
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2309374120. PubMed ID: 37590405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks.
    Passelègue FX; Schubnel A; Nielsen S; Bhat HS; Madariaga R
    Science; 2013 Jun; 340(6137):1208-11. PubMed ID: 23744944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between Process Zone and Material Heterogeneities for Dynamic Cracks.
    Barras F; Geubelle PH; Molinari JF
    Phys Rev Lett; 2017 Oct; 119(14):144101. PubMed ID: 29053320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cohesive zone length of metagabbro at supershear rupture velocity.
    Fukuyama E; Xu S; Yamashita F; Mizoguchi K
    J Seismol; 2016; 20(4):1207-1215. PubMed ID: 28190969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.