BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31771158)

  • 1. High Specific Efficiency of Venom of Two Prey-Specialized Spiders.
    Michálek O; Kuhn-Nentwig L; Pekár S
    Toxins (Basel); 2019 Nov; 11(12):. PubMed ID: 31771158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Venom of prey-specialized spiders is more toxic to their preferred prey: A result of prey-specific toxins.
    Pekár S; Líznarová E; Bočánek O; Zdráhal Z
    J Anim Ecol; 2018 Nov; 87(6):1639-1652. PubMed ID: 30125357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition and toxicity of venom produced by araneophagous white-tailed spiders (Lamponidae: Lampona sp.).
    Michálek O; Walker AA; Šedo O; Zdráhal Z; King GF; Pekár S
    Sci Rep; 2022 Dec; 12(1):21597. PubMed ID: 36517485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trophic niche, capture efficiency and venom profiles of six sympatric ant-eating spider species (Araneae: Zodariidae).
    Pekár S; Petráková L; Šedo O; Korenko S; Zdráhal Z
    Mol Ecol; 2018 Feb; 27(4):1053-1064. PubMed ID: 29352504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey.
    Pekár S; Šedo O; Líznarová E; Korenko S; Zdráhal Z
    Naturwissenschaften; 2014 Jul; 101(7):533-40. PubMed ID: 24879352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prey and Venom Efficacy of Male and Female Wandering Spider,
    Valenzuela-Rojas JC; González-Gómez JC; van der Meijden A; Cortés JN; Guevara G; Franco LM; Pekár S; García LF
    Toxins (Basel); 2019 Oct; 11(11):. PubMed ID: 31717836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Venom gland size and venom complexity-essential trophic adaptations of venomous predators: A case study using spiders.
    Pekár S; Bočánek O; Michálek O; Petráková L; Haddad CR; Šedo O; Zdráhal Z
    Mol Ecol; 2018 Nov; 27(21):4257-4269. PubMed ID: 30187989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae).
    Pekár S; Sobotník J; Lubin Y
    Naturwissenschaften; 2011 Jul; 98(7):593-603. PubMed ID: 21603929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic integration in a series of trophic traits: tracing the evolution of myrmecophagy in spiders (Araneae).
    Pekár S; Michalko R; Korenko S; Sedo O; Líznarová E; Sentenská L; Zdráhal Z
    Zoology (Jena); 2013 Feb; 116(1):27-35. PubMed ID: 23182600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator.
    García LF; Viera C; Pekár S
    Naturwissenschaften; 2018 Apr; 105(3-4):30. PubMed ID: 29610987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prey-race drives differentiation of biotypes in ant-eating spiders.
    Pekár S; Smerda J; Hrušková M; Sedo O; Muster C; Cardoso P; Zdráhal Z; Korenko S; Bureš P; Líznarová E; Sentenská L
    J Anim Ecol; 2012 Jul; 81(4):838-48. PubMed ID: 22313500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capture efficiency and trophic adaptations of a specialist and generalist predator: A comparison.
    Michálek O; Petráková L; Pekár S
    Ecol Evol; 2017 Apr; 7(8):2756-2766. PubMed ID: 28428866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae).
    Kuhn-Nentwig L; Schaller J; Nentwig W
    Toxicon; 2004 Apr; 43(5):543-53. PubMed ID: 15066412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the peptidome and insecticidal activity of venom from a taxonomically diverse group of theraphosid spiders.
    Gentz MC; Jones A; Clement H; King GF
    Toxicon; 2009 Apr; 53(5):496-502. PubMed ID: 19673095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types.
    Wigger E; Kuhn-Nentwig L; Nentwig W
    Toxicon; 2002 Jun; 40(6):749-52. PubMed ID: 12175611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in Loxosceles spider venom composition and toxicity contribute to the severity of envenomation.
    de Oliveira KC; Gonçalves de Andrade RM; Piazza RM; Ferreira JM; van den Berg CW; Tambourgi DV
    Toxicon; 2005 Mar; 45(4):421-9. PubMed ID: 15733563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nest usurpation: a specialised hunting strategy used to overcome dangerous spider prey.
    Michálek O; Lubin Y; Pekár S
    Sci Rep; 2019 Mar; 9(1):5386. PubMed ID: 30926825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile spider venom peptides and their medical and agricultural applications.
    Saez NJ; Herzig V
    Toxicon; 2019 Feb; 158():109-126. PubMed ID: 30543821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the venom dose of the spider Cupiennius salei using monoclonal antibodies.
    Malli H; Imboden H; Kuhn-Nentwig L
    Toxicon; 1998 Dec; 36(12):1959-69. PubMed ID: 9839680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The deep-rooted origin of disulfide-rich spider venom toxins.
    Shaikh NY; Sunagar K
    Elife; 2023 Feb; 12():. PubMed ID: 36757362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.