These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31771193)

  • 1. Role of Polypropylene Fibres in Concrete Spalling Risk Mitigation in Fire and Test Methods of Fibres Effectiveness Evaluation.
    Hager I; Mróz K
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31771193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spalling Resistance of Fiber-Reinforced Ultra-High-Strength Concrete Subjected to the ISO-834 Standard Fire Curve: Effects of Thermal Strain and Water Vapor Pressure.
    Lee T; Kim G; Choe G; Hwang E; Lee J; Ryu D; Nam J
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32867379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat-Induced Spalling of Concrete: A Review of the Influencing Factors and Their Importance to the Phenomenon.
    Mohammed H; Ahmed H; Kurda R; Alyousef R; Deifalla AF
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explosive Spalling Mechanism and Modeling of Concrete Lining Exposed to Fire.
    Qiao R; Guo Y; Zhou H; Xi H
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Plastic Waste on the Heat-Induced Spalling Performance and Mechanical Properties of High Strength Concrete.
    Rohden AB; Camilo JR; Amaral RC; Garcez EO; Garcez MR
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of High Temperature on the Fracture Properties of Polyolefin Fibre Reinforced Concrete.
    Alberti MG; Gálvez JC; Enfedaque A; Castellanos R
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33525424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explosive Spalling Behavior of Single-Sided Heated Concrete According to Compressive Strength and Heating Rate.
    Hwang E; Kim G; Choe G; Yoon M; Son M; Suh D; Eu H; Nam J
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovering Graphical Heuristics on Fire-Induced Spalling of Concrete Through Explainable Artificial Intelligence.
    Tapeh ATG; Naser MZ
    Fire Technol; 2022; 58(5):2871-2898. PubMed ID: 35910785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and Thermal Properties of Hybrid Fibre-Reinforced Concrete Exposed to Recurrent High Temperature and Aviation Oil.
    Hossain MM; Al-Deen S; Hassan MK; Shill SK; Kader MA; Hutchison W
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34064171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility Study of Digital Image Correlation in Determining Strains in Concrete Exposed to Fire.
    Mróz K; Tekieli M; Hager I
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32486464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual Tensile Properties and Explosive Spalling of High-Performance Fiber-Reinforced Cementitious Composites Exposed to Thermal Damage.
    Park GK; Park GJ; Park JJ; Lee N; Kim SW
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33806124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fire Performance of Heavyweight Self-Compacting Concrete and Heavyweight High Strength Concrete.
    Aslani F; Hamidi F; Ma Q
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change of the Structural Properties of High-Performance Concretes Subjected to Thermal Effects.
    Kaczmarczyk GP; Wałach D; Natividade-Jesus E; Ferreira R
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties of Ultra-High Performance Concrete before and after Exposure to High Temperatures.
    Chen HJ; Yu YL; Tang CW
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of Novel Functionally-Graded Prepacked Aggregate Fibrous Concrete against Low Velocity Repeated Projectile Impacts.
    Prasad N; Murali G; Fediuk R; Vatin N; Karelina M
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33430466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fire Resistance of High-Volume Fly Ash RC Slab Inclusion with Nano-Silica.
    Mussa MH; Radzi NAM; Hamid R; Mutalib AA
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34203973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Using Hybrid Polypropylene and Glass Fibre on the Mechanical Properties and Permeability of Concrete.
    Ahmed AAM; Jia Y
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mechanical Properties and Chloride Resistance of Concrete Reinforced with Hybrid Polypropylene and Basalt Fibres.
    Hu X; Guo Y; Lv J; Mao J
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31349627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Fibre Material and Fibre Roughness on the Pullout Behaviour of Metallic Micro Fibres Embedded in UHPC.
    Wiemer N; Wetzel A; Schleiting M; Krooß P; Vollmer M; Niendorf T; Böhm S; Middendorf B
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32674295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Elevated Temperature on Compressive Strength and Physical Properties of Neem Seed Husk Ash Concrete.
    Mwilongo KP; Machunda RL; Jande YAC
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32155949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.