These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31771276)

  • 1. Effects of Environmental Conditions and Composition on the Electrical Properties of Textile Fabrics.
    Torreblanca González J; García Ovejero R; Lozano Murciego Á; Villarrubia González G; De Paz JF
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical and Magnetodielectric Properties of Magneto-Active Fabrics for Electromagnetic Shielding and Health Monitoring.
    Bunoiu M; Anitas EM; Pascu G; Chirigiu LME; Bica I
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32640716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance.
    Wilson S; Laing R; Tan EW; Wilson C
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of changes in the electrical properties of novel knitted conductive textiles during cyclic loading.
    Isaia C; McNally D; McMaster SA; Branson DT
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6058-6061. PubMed ID: 28269634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of environmental conditions on re-emission of formaldehyde from textile materials.
    Wiglusz R; Sitko E; Jarnuszkiewicz I
    Bull Inst Marit Trop Med Gdynia; 1995; 46(1-4):53-8. PubMed ID: 8727469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wearable Textile Thermograph.
    Lugoda P; Hughes-Riley T; Morris R; Dias T
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formaldehyde release from furnishing fabrics. Effect of ageing, temperature and air humidity.
    Wiglusz R; Sitko E; Jarnuszkiewicz I
    Bull Inst Marit Trop Med Gdynia; 1991; 42(1-4):51-6. PubMed ID: 1844846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.
    Sahito IA; Sun KC; Arbab AA; Qadir MB; Jeong SH
    Carbohydr Polym; 2015 Oct; 130():299-306. PubMed ID: 26076630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation for smart textile electronics - humidity and temperature sensor.
    Larsson A; Tran TN; Aasmundtveit KE; Seeberg TM
    Stud Health Technol Inform; 2015; 211():207-12. PubMed ID: 25980871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the environment for weaned piglets using polypropylene fabrics above the animals in cold periods.
    Dolz N; Babot D; Álvarez-Rodríguez J; Forcada F
    Int J Biometeorol; 2015 Dec; 59(12):1839-47. PubMed ID: 25910465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the Functional Ageing of Electrically Conductive and Sensing Textiles: A Review.
    Biermaier C; Bechtold T; Pham T
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of textile-based high-tech products: the new challenge.
    da Rocha AM
    Stud Health Technol Inform; 2004; 108():330-4. PubMed ID: 15718663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.
    Zhou H; Lu Y; Chen W; Wu Z; Zou H; Krundel L; Li G
    Sensors (Basel); 2015 Jul; 15(7):17241-57. PubMed ID: 26193273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of thermal and moisture management properties on knitted fabrics and comparison with a physiological model in warm conditions.
    Bedek G; Salaün F; Martinkovska Z; Devaux E; Dupont D
    Appl Ergon; 2011 Nov; 42(6):792-800. PubMed ID: 21277564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport Properties of Natural and Artificial Smart Fabrics Impregnated by Graphite Nanomaterial Stacks.
    Esposito Corcione C; Ferrari F; Striani R; Greco A
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33923486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design.
    Ng JL; Collins CE; Knothe Tate ML
    Acta Biomater; 2017 Jul; 56():14-24. PubMed ID: 28274765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatographic Analysis of Textile Dyes.
    Simion Beldean-Galea M; Copaciu FM; Coman MV
    J AOAC Int; 2018 Sep; 101(5):1353-1370. PubMed ID: 29743133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
    Andrew TL; Zhang L; Cheng N; Baima M; Kim JJ; Allison L; Hoxie S
    Acc Chem Res; 2018 Apr; 51(4):850-859. PubMed ID: 29521501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Textile-based sampling for potentiometric determination of ions.
    Lisak G; Arnebrant T; Ruzgas T; Bobacka J
    Anal Chim Acta; 2015 Jun; 877():71-9. PubMed ID: 26002212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.