These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 31771647)

  • 1. Building an Otoscopic screening prototype tool using deep learning.
    Livingstone D; Talai AS; Chau J; Forkert ND
    J Otolaryngol Head Neck Surg; 2019 Nov; 48(1):66. PubMed ID: 31771647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database.
    Cha D; Pae C; Seong SB; Choi JY; Park HJ
    EBioMedicine; 2019 Jul; 45():606-614. PubMed ID: 31272902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence to detect tympanic membrane perforations.
    Habib AR; Wong E; Sacks R; Singh N
    J Laryngol Otol; 2020 Apr; 134(4):311-315. PubMed ID: 32238202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Otoscopic diagnosis using computer vision: An automated machine learning approach.
    Livingstone D; Chau J
    Laryngoscope; 2020 Jun; 130(6):1408-1413. PubMed ID: 31532858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence to classify ear disease from otoscopy: A systematic review and meta-analysis.
    Habib AR; Kajbafzadeh M; Hasan Z; Wong E; Gunasekera H; Perry C; Sacks R; Kumar A; Singh N
    Clin Otolaryngol; 2022 May; 47(3):401-413. PubMed ID: 35253378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the generalizability of deep learning image classification algorithms to detect middle ear disease using otoscopy.
    Habib AR; Xu Y; Bock K; Mohanty S; Sederholm T; Weeks WB; Dodhia R; Ferres JL; Perry C; Sacks R; Singh N
    Sci Rep; 2023 Apr; 13(1):5368. PubMed ID: 37005441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Web-Based Deep Learning Model for Automated Diagnosis of Otoscopic Images.
    Tsutsumi K; Goshtasbi K; Risbud A; Khosravi P; Pang JC; Lin HW; Djalilian HR; Abouzari M
    Otol Neurotol; 2021 Oct; 42(9):e1382-e1388. PubMed ID: 34191783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Ear Abnormality from 2D Photographs Using Convolutional Neural Networks.
    Hallac RR; Lee J; Pressler M; Seaward JR; Kane AA
    Sci Rep; 2019 Dec; 9(1):18198. PubMed ID: 31796839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning for Classification of Pediatric Otitis Media.
    Wu Z; Lin Z; Li L; Pan H; Chen G; Fu Y; Qiu Q
    Laryngoscope; 2021 Jul; 131(7):E2344-E2351. PubMed ID: 33369754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AdaptAhead Optimization Algorithm for Learning Deep CNN Applied to MRI Segmentation.
    Hoseini F; Shahbahrami A; Bayat P
    J Digit Imaging; 2019 Feb; 32(1):105-115. PubMed ID: 30039425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network.
    Liu Z; Cao Y; Li Y; Xiao X; Qiu Q; Yang M; Zhao Y; Cui L
    Comput Methods Programs Biomed; 2020 Apr; 187():105019. PubMed ID: 31421868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network.
    Chen R; Wang M; Lai Y
    PLoS One; 2020; 15(7):e0235783. PubMed ID: 32634167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel fused convolutional neural network for biomedical image classification.
    Pang S; Du A; Orgun MA; Yu Z
    Med Biol Eng Comput; 2019 Jan; 57(1):107-121. PubMed ID: 30003400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network.
    Han SS; Park GH; Lim W; Kim MS; Na JI; Park I; Chang SE
    PLoS One; 2018; 13(1):e0191493. PubMed ID: 29352285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast cancer pathological image classification based on deep learning.
    Hou Y
    J Xray Sci Technol; 2020; 28(4):727-738. PubMed ID: 32390646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networks.
    Khan MA; Kwon S; Choo J; Hong SM; Kang SH; Park IH; Kim SK; Hong SJ
    Neural Netw; 2020 Jun; 126():384-394. PubMed ID: 32311656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.