These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 31772042)

  • 1. 4D-CT angiography versus 3D-rotational angiography as the imaging modality for computational fluid dynamics of cerebral aneurysms.
    Cancelliere NM; Najafi M; Brina O; Bouillot P; Vargas MI; Lovblad KO; Krings T; Pereira VM; Steinman DA
    J Neurointerv Surg; 2020 Jun; 12(6):626-630. PubMed ID: 31772042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How patient-specific do internal carotid artery inflow rates need to be for computational fluid dynamics of cerebral aneurysms?
    Najafi M; Cancelliere NM; Brina O; Bouillot P; Vargas MI; Delattre BM; Pereira VM; Steinman DA
    J Neurointerv Surg; 2021 May; 13(5):459-464. PubMed ID: 32732256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducibility of image-based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography.
    Ren Y; Chen GZ; Liu Z; Cai Y; Lu GM; Li ZY
    Biomed Eng Online; 2016 May; 15(1):50. PubMed ID: 27150439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative and Qualitative Comparison of 4D-DSA with 3D-DSA Using Computational Fluid Dynamics Simulations in Cerebral Aneurysms.
    Lang S; Hoelter P; Birkhold AI; Schmidt M; Endres J; Strother C; Doerfler A; Luecking H
    AJNR Am J Neuroradiol; 2019 Sep; 40(9):1505-1510. PubMed ID: 31467234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics.
    Yoneyama Y; Isoda H; Ishiguro K; Terada M; Kamiya M; Otsubo K; Perera R; Mizuno T; Fukuyama A; Takiguchi K; Watanabe T; Kosugi T; Komori Y; Naganawa S
    Phys Eng Sci Med; 2020 Dec; 43(4):1327-1337. PubMed ID: 33044647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Risk of Intracranial Aneurysm Rupture Using Morphological and Hemodynamic Biomarkers Evaluated from Magnetic Resonance Fluid Dynamics and Computational Fluid Dynamics.
    Perera R; Isoda H; Ishiguro K; Mizuno T; Takehara Y; Terada M; Tanoi C; Naito T; Sakahara H; Hiramatsu H; Namba H; Izumi T; Wakabayashi T; Kosugi T; Onishi Y; Alley M; Komori Y; Ikeda M; Naganawa S
    Magn Reson Med Sci; 2020 Dec; 19(4):333-344. PubMed ID: 31956175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Flow Dynamics Study of the Intracranial Veins Using Whole Brain Four-Dimensional Computed Tomography Angiography.
    Mizutani K; Arai N; Toda M; Akiyama T; Fujiwara H; Jinzaki M; Yoshida K
    World Neurosurg; 2019 Nov; 131():e176-e185. PubMed ID: 31330333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic evaluation of unruptured intracranial aneurysms by 4D-CT angiography: comparison with digital subtraction angiography (DSA) and surgical findings.
    Yang L; Gao X; Gao C; Xu S; Cao S
    BMC Med Imaging; 2023 Oct; 23(1):161. PubMed ID: 37853358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-contrast enhanced silent MR angiography to evaluate hemodynamics and morphology of unruptured intracranial aneurysms: a comparative computational fluid dynamics study.
    Lu Y; Leng X; Zou R; Chen Q; Li W; Zhou X; Tan S; Huang X; Ding C; Gong F; Xiang J; Wang Y
    J Neurointerv Surg; 2023 Aug; 15(8):753-759. PubMed ID: 35882551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel use of 4D-CTA in imaging of intranidal aneurysms in an acutely ruptured arteriovenous malformation: is this the way forward?
    Chandran A; Radon M; Biswas S; Das K; Puthuran M; Nahser H
    J Neurointerv Surg; 2016 Sep; 8(9):e36. PubMed ID: 26180096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracranial bypass for giant aneurysms treatment assessed by computational fluid dynamics (CFD) analysis.
    Wiśniewski K; Reorowicz P; Tyfa Z; Price B; Jian A; Fahlström A; Obidowski D; Jaskólski DJ; Jóźwik K; Drummond K; Wessels L; Vajkoczy P; Adamides AA
    Sci Rep; 2024 Sep; 14(1):21548. PubMed ID: 39278964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of pulsation in unruptured cerebral aneurysms by ECG-gated 3D-CT angiography (4D-CTA) with 320-row area detector CT (ADCT) and follow-up evaluation results: assessment based on heart rate at the time of scanning.
    Hayakawa M; Tanaka T; Sadato A; Adachi K; Ito K; Hattori N; Omi T; Oheda M; Katada K; Murayama K; Kato Y; Hirose Y
    Clin Neuroradiol; 2014 Jun; 24(2):145-50. PubMed ID: 23913018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall motion at 4D-CT angiography and surgical correlation in unruptured intracranial aneurysms: a pilot study.
    Ferrari F; Cirillo L; Calbucci F; Bartiromo F; Ambrosetto P; Fioravanti A; Leonardi M
    J Neurosurg Sci; 2019 Oct; 63(5):501-508. PubMed ID: 27188661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-energy CT angiography in the evaluation of intracranial aneurysms: image quality, radiation dose, and comparison with 3D rotational digital subtraction angiography.
    Zhang LJ; Wu SY; Niu JB; Zhang ZL; Wang HZ; Zhao YE; Chai X; Zhou CS; Lu GM
    AJR Am J Roentgenol; 2010 Jan; 194(1):23-30. PubMed ID: 20028901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional image fusion of CTA and angiography for real-time guidance during neurointerventional procedures.
    Zhang Q; Sun Q; Zhang Y; Zhang H; Shan T; Han J; Pan W; Gu C; Xu R
    J Neurointerv Surg; 2017 Mar; 9(3):302-306. PubMed ID: 27048959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics.
    Isoda H; Ohkura Y; Kosugi T; Hirano M; Alley MT; Bammer R; Pelc NJ; Namba H; Sakahara H
    Neuroradiology; 2010 Oct; 52(10):913-20. PubMed ID: 19967532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.