BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31773020)

  • 1. Molecular Signaling in Response to Charged Particle Exposures and its Importance in Particle Therapy.
    Hellweg CE; Chishti AA; Diegeler S; Spitta LF; Henschenmacher B; Baumstark-Khan C
    Int J Part Ther; 2018; 5(1):60-73. PubMed ID: 31773020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription Factors in the Cellular Response to Charged Particle Exposure.
    Hellweg CE; Spitta LF; Henschenmacher B; Diegeler S; Baumstark-Khan C
    Front Oncol; 2016; 6():61. PubMed ID: 27047795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiogenomics.
    Story MD; Durante M
    Med Phys; 2018 Nov; 45(11):e1111-e1122. PubMed ID: 30421807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological characterization of low-energy ions with high-energy deposition on human cells.
    Saha J; Wilson P; Thieberger P; Lowenstein D; Wang M; Cucinotta FA
    Radiat Res; 2014 Sep; 182(3):282-91. PubMed ID: 25098728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustered DNA damage concentrated in particle trajectories causes persistent large-scale rearrangements in chromatin architecture.
    Timm S; Lorat Y; Jakob B; Taucher-Scholz G; Rübe CE
    Radiother Oncol; 2018 Dec; 129(3):600-610. PubMed ID: 30049456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smad7 foci are present in micronuclei induced by heavy particle radiation.
    Wang M; Saha J; Cucinotta FA
    Mutat Res; 2013 Aug; 756(1-2):108-14. PubMed ID: 23643526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of switch from ATM to ATR signaling at the sites of DNA damage induced by low and high LET radiation.
    Saha J; Wang M; Cucinotta FA
    DNA Repair (Amst); 2013 Dec; 12(12):1143-51. PubMed ID: 24238855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Energy Deposition of Ionizing Radiation to Cell Damage Signaling: Benchmarking Simulations by Measured Yields of Initial DNA Damage after Ion Microbeam Irradiation.
    Gonon G; Villagrasa C; Voisin P; Meylan S; Bueno M; Benadjaoud MA; Tang N; Langner F; Rabus H; Barquinero JF; Giesen U; Gruel G
    Radiat Res; 2019 Jun; 191(6):566-584. PubMed ID: 31021733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of time-dependent DNA damage induced by energetic carbon ions and their fragments using fluorescent nuclear track detectors.
    McFadden CH; Rahmanian S; Flint DB; Bright SJ; Yoon DS; O'Brien DJ; Asaithamby A; Abdollahi A; Greilich S; Sawakuchi GO
    Med Phys; 2020 Jan; 47(1):272-281. PubMed ID: 31677156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing Predictive or Prognostic Biomarkers for Charged Particle Radiotherapy.
    Story MD; Wang J
    Int J Part Ther; 2018; 5(1):94-102. PubMed ID: 30393751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA Damage Clustering after Ionizing Radiation and Consequences in the Processing of Chromatin Breaks.
    Mladenova V; Mladenov E; Stuschke M; Iliakis G
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk.
    Autsavapromporn N; Plante I; Liu C; Konishi T; Usami N; Funayama T; Azzam EI; Murakami T; Suzuki M
    Int J Radiat Biol; 2015 Jan; 91(1):62-70. PubMed ID: 25084840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact portable sources of high-LET radiation: Validation and potential application for galactic cosmic radiation countermeasure discovery.
    Hertel NE; Biegalski SR; Nelson VI; Nelson WA; Mukhopadhyay S; Su Z; Chan AM; Kesarwala AH; Dynan WS
    Life Sci Space Res (Amst); 2022 Nov; 35():163-169. PubMed ID: 36336362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression.
    Michalettou TD; Michalopoulos I; Costes SV; Hellweg CE; Hada M; Georgakilas AG
    Life (Basel); 2021 Feb; 11(2):. PubMed ID: 33546472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Both irradiated and bystander effects link with DNA repair capacity and the linear energy transfer.
    Tu W; Dong C; Fu J; Pan Y; Kobayashi A; Furusawa Y; Konishi T; Shao C
    Life Sci; 2019 Apr; 222():228-234. PubMed ID: 30858123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing.
    Wang H; Wang X; Chen G; Zhang X; Tang X; Park D; Cucinotta FA; Yu DS; Deng X; Dynan WS; Doetsch PW; Wang Y
    J Biol Chem; 2014 Oct; 289(44):30635-30644. PubMed ID: 25210033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of High- and Low-LET Radiation-Induced DNA Double-Strand Break Processing in Living Cells.
    Roobol SJ; van den Bent I; van Cappellen WA; Abraham TE; Paul MW; Kanaar R; Houtsmuller AB; van Gent DC; Essers J
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32917044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A composite microdose Adaptive Response (AR) and Bystander Effect (BE) model-application to low LET and high LET AR and BE data.
    Leonard BE
    Int J Radiat Biol; 2008 Aug; 84(8):681-701. PubMed ID: 18661382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation.
    Baumstark-Khan C; Heilmann J; Rink H
    Adv Space Res; 2003; 31(6):1583-91. PubMed ID: 12971414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation.
    Tomita M; Matsumoto H; Funayama T; Yokota Y; Otsuka K; Maeda M; Kobayashi Y
    Life Sci Space Res (Amst); 2015 Jul; 6():36-43. PubMed ID: 26256626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.