BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31773094)

  • 1. Construction and optimization of a base editor based on the MS2 system.
    Zhang S; Feng S; Jiang W; Huang X; Chen J
    Animal Model Exp Med; 2019 Sep; 2(3):185-190. PubMed ID: 31773094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system.
    Qin L; Li J; Wang Q; Xu Z; Sun L; Alariqi M; Manghwar H; Wang G; Li B; Ding X; Rui H; Huang H; Lu T; Lindsey K; Daniell H; Zhang X; Jin S
    Plant Biotechnol J; 2020 Jan; 18(1):45-56. PubMed ID: 31116473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces.
    Zhao Y; Tian J; Zheng G; Chen J; Sun C; Yang Z; Zimin AA; Jiang W; Deng Z; Wang Z; Lu Y
    Sci China Life Sci; 2020 Jul; 63(7):1053-1062. PubMed ID: 31872379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing Cytosine Base Editing Scope and Efficiency With Engineered Cas9-PmCDA1 Fusions and the Modified sgRNA in Rice.
    Wu Y; Xu W; Wang F; Zhao S; Feng F; Song J; Zhang C; Yang J
    Front Genet; 2019; 10():379. PubMed ID: 31134125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems.
    Xie J; Huang X; Wang X; Gou S; Liang Y; Chen F; Li N; Ouyang Z; Zhang Q; Ge W; Jin Q; Shi H; Zhuang Z; Zhao X; Lian M; Wang J; Ye Y; Quan L; Wu H; Wang K; Lai L
    BMC Biol; 2020 Sep; 18(1):131. PubMed ID: 32967664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-Check Base Editing for Efficient A to G Conversions.
    Xin X; Li J; Zhao D; Li S; Xie Q; Li Z; Fan F; Bi C; Zhang X
    ACS Synth Biol; 2019 Dec; 8(12):2629-2634. PubMed ID: 31765564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base Editing in Peanut Using CRISPR/nCas9.
    Neelakandan AK; Subedi B; Traore SM; Binagwa P; Wright DA; He G
    Front Genome Ed; 2022; 4():901444. PubMed ID: 35647579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytosine base editors optimized for genome editing in potato protoplasts.
    Westberg I; Carlsen FM; Johansen IE; Petersen BL
    Front Genome Ed; 2023; 5():1247702. PubMed ID: 37719877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria.
    Li C; Wang L; Cseke LJ; Vasconcelos F; Huguet-Tapia JC; Gassmann W; Pauwels L; White FF; Dong H; Yang B
    Commun Biol; 2023 Jan; 6(1):56. PubMed ID: 36646768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases.
    Kim D; Lim K; Kim ST; Yoon SH; Kim K; Ryu SM; Kim JS
    Nat Biotechnol; 2017 May; 35(5):475-480. PubMed ID: 28398345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prime editing with genuine Cas9 nickases minimizes unwanted indels.
    Lee J; Lim K; Kim A; Mok YG; Chung E; Cho SI; Lee JM; Kim JS
    Nat Commun; 2023 Mar; 14(1):1786. PubMed ID: 36997524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus
    Zhang C; Li N; Rao L; Li J; Liu Q; Tian C
    Microbiol Spectr; 2022 Jun; 10(3):e0232121. PubMed ID: 35608343
    [No Abstract]   [Full Text] [Related]  

  • 13. Internally inlaid SaCas9 base editors enable window specific base editing.
    Jiang L; Long J; Yang Y; Zhou L; Su J; Qin F; Tang W; Tao R; Chen Q; Yao S
    Theranostics; 2022; 12(10):4767-4778. PubMed ID: 35832085
    [No Abstract]   [Full Text] [Related]  

  • 14. Development of a DNA double-strand break-free base editing tool in
    Deng C; Lv X; Li J; Liu Y; Du G; Liu L
    Metab Eng Commun; 2020 Dec; 11():e00135. PubMed ID: 32577397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells.
    Ye L; Zhao D; Li J; Wang Y; Li B; Yang Y; Hou X; Wang H; Wei Z; Liu X; Li Y; Li S; Liu Y; Zhang X; Bi C
    Nat Biotechnol; 2024 Jan; ():. PubMed ID: 38168994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis.
    Zhou C; Sun Y; Yan R; Liu Y; Zuo E; Gu C; Han L; Wei Y; Hu X; Zeng R; Li Y; Zhou H; Guo F; Yang H
    Nature; 2019 Jul; 571(7764):275-278. PubMed ID: 31181567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum).
    Wang G; Xu Z; Wang F; Huang Y; Xin Y; Liang S; Li B; Si H; Sun L; Wang Q; Ding X; Zhu X; Chen L; Yu L; Lindsey K; Zhang X; Jin S
    BMC Biol; 2022 Feb; 20(1):45. PubMed ID: 35164736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Base Editing Efficiency in
    Zhang Y; Yun K; Huang H; Tu R; Hua E; Wang M
    ACS Synth Biol; 2021 May; 10(5):1053-1063. PubMed ID: 33720688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants.
    Tan J; Zeng D; Zhao Y; Wang Y; Liu T; Li S; Xue Y; Luo Y; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2022 May; 20(5):934-943. PubMed ID: 34984801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Dual Base Editor Systems (iACBEs) for Simultaneous Conversion of Adenine and Cytosine in the Bacterium Escherichia coli.
    Shelake RM; Pramanik D; Kim JY
    mBio; 2023 Feb; 14(1):e0229622. PubMed ID: 36625577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.