These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A deep learning approach for the blind logP prediction in SAMPL6 challenge. Prasad S; Brooks BR J Comput Aided Mol Des; 2020 May; 34(5):535-542. PubMed ID: 32002779 [TBL] [Abstract][Full Text] [Related]
6. Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P Challenge. Işık M; Bergazin TD; Fox T; Rizzi A; Chodera JD; Mobley DL J Comput Aided Mol Des; 2020 Apr; 34(4):335-370. PubMed ID: 32107702 [TBL] [Abstract][Full Text] [Related]
7. Prediction of octanol-water partition coefficients for the SAMPL6-[Formula: see text] molecules using molecular dynamics simulations with OPLS-AA, AMBER and CHARMM force fields. Fan S; Iorga BI; Beckstein O J Comput Aided Mol Des; 2020 May; 34(5):543-560. PubMed ID: 31960254 [TBL] [Abstract][Full Text] [Related]
16. Benchmarking Different QM Levels for Usage with COSMO-RS. Reinisch J; Diedenhofen M; Wilcken R; Udvarhelyi A; Glöß A J Chem Inf Model; 2019 Nov; 59(11):4806-4813. PubMed ID: 31692342 [TBL] [Abstract][Full Text] [Related]
17. Multi-phase Boltzmann weighting: accounting for local inhomogeneity in molecular simulations of water-octanol partition coefficients in the SAMPL6 challenge. Krämer A; Hudson PS; Jones MR; Brooks BR J Comput Aided Mol Des; 2020 May; 34(5):471-483. PubMed ID: 32060677 [TBL] [Abstract][Full Text] [Related]
18. The SAMPL6 challenge on predicting octanol-water partition coefficients from EC-RISM theory. Tielker N; Tomazic D; Eberlein L; Güssregen S; Kast SM J Comput Aided Mol Des; 2020 Apr; 34(4):453-461. PubMed ID: 31981015 [TBL] [Abstract][Full Text] [Related]
19. Some conclusions regarding the predictions of tautomeric equilibria in solution based on the SAMPL2 challenge. Klamt A; Diedenhofen M J Comput Aided Mol Des; 2010 Jun; 24(6-7):621-5. PubMed ID: 20376531 [TBL] [Abstract][Full Text] [Related]
20. Prediction of free energies of hydration with COSMO-RS on the SAMPL4 data set. Reinisch J; Klamt A J Comput Aided Mol Des; 2014 Mar; 28(3):169-73. PubMed ID: 24420026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]