BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31773501)

  • 1. Bone suppression for chest X-ray image using a convolutional neural filter.
    Matsubara N; Teramoto A; Saito K; Fujita H
    Australas Phys Eng Sci Med; 2019 Nov; ():. PubMed ID: 31773501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN).
    Suzuki K; Abe H; MacMahon H; Doi K
    IEEE Trans Med Imaging; 2006 Apr; 25(4):406-16. PubMed ID: 16608057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dilated conditional GAN for bone suppression in chest radiographs with enforced semantic features.
    Zhou Z; Zhou L; Shen K
    Med Phys; 2020 Dec; 47(12):6207-6215. PubMed ID: 32621786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of bones from soft tissue in chest radiographs: Anatomy-specific orientation-frequency-specific deep neural network convolution.
    Zarshenas A; Liu J; Forti P; Suzuki K
    Med Phys; 2019 May; 46(5):2232-2242. PubMed ID: 30848498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study of deep-learning-based bone suppression incorporated with single-energy material decomposition technique in chest X-rays.
    Lim Y; Lee M; Cho H; Kim G; Choi J; Cha B; Kim S
    Br J Radiol; 2022 Oct; 95(1139):20211182. PubMed ID: 35993343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel bone suppression method that improves lung nodule detection : Suppressing dedicated bone shadows in radiographs while preserving the remaining signal.
    von Berg J; Young S; Carolus H; Wolz R; Saalbach A; Hidalgo A; Giménez A; Franquet T
    Int J Comput Assist Radiol Surg; 2016 Apr; 11(4):641-55. PubMed ID: 26337439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain.
    Yang W; Chen Y; Liu Y; Zhong L; Qin G; Lu Z; Feng Q; Chen W
    Med Image Anal; 2017 Jan; 35():421-433. PubMed ID: 27589577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small lung nodules detection based on local variance analysis and probabilistic neural network.
    Woźniak M; Połap D; Capizzi G; Sciuto GL; Kośmider L; Frankiewicz K
    Comput Methods Programs Biomed; 2018 Jul; 161():173-180. PubMed ID: 29852959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation.
    Dong X; Xu S; Liu Y; Wang A; Saripan MI; Li L; Zhang X; Lu L
    Cancer Imaging; 2020 Aug; 20(1):53. PubMed ID: 32738913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks.
    Souza JC; Bandeira Diniz JO; Ferreira JL; França da Silva GL; Corrêa Silva A; de Paiva AC
    Comput Methods Programs Biomed; 2019 Aug; 177():285-296. PubMed ID: 31319957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based bone suppression in chest radiographs using CT-derived features: a feasibility study.
    Ren G; Xiao H; Lam SK; Yang D; Li T; Teng X; Qin J; Cai J
    Quant Imaging Med Surg; 2021 Dec; 11(12):4807-4819. PubMed ID: 34888191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial feature and resolution maximization GAN for bone suppression in chest radiographs.
    Rani G; Misra A; Dhaka VS; Zumpano E; Vocaturo E
    Comput Methods Programs Biomed; 2022 Sep; 224():107024. PubMed ID: 35863123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of pneumonia infection in lungs from chest X-ray images using deep convolutional neural network and content-based image retrieval techniques.
    Rajasenbagam T; Jeyanthi S; Pandian JA
    J Ambient Intell Humaniz Comput; 2021 Mar; ():1-8. PubMed ID: 33777251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose reduction and image quality improvement of chest radiography by using bone-suppression technique and low tube voltage: a phantom study.
    Takagi S; Yaegashi T; Ishikawa M
    Eur Radiol; 2020 Jan; 30(1):571-580. PubMed ID: 31385049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image synthesis with disentangled attributes for chest X-ray nodule augmentation and detection.
    Shen Z; Ouyang X; Xiao B; Cheng JZ; Shen D; Wang Q
    Med Image Anal; 2023 Feb; 84():102708. PubMed ID: 36516554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs.
    Gu Y; Lu X; Yang L; Zhang B; Yu D; Zhao Y; Gao L; Wu L; Zhou T
    Comput Biol Med; 2018 Dec; 103():220-231. PubMed ID: 30390571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of pulmonary vessel suppression on computerized detection of nodules in chest CT scans.
    Gu X; Xie W; Fang Q; Zhao J; Li Q
    Med Phys; 2020 Oct; 47(10):4917-4927. PubMed ID: 32681587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional neural networks for the classification of chest X-rays in the IoT era.
    Almezhghwi K; Serte S; Al-Turjman F
    Multimed Tools Appl; 2021; 80(19):29051-29065. PubMed ID: 34155434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images.
    Behzadi-Khormouji H; Rostami H; Salehi S; Derakhshande-Rishehri T; Masoumi M; Salemi S; Keshavarz A; Gholamrezanezhad A; Assadi M; Batouli A
    Comput Methods Programs Biomed; 2020 Mar; 185():105162. PubMed ID: 31715332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction.
    Lv E; Liu W; Wen P; Kang X
    J Healthc Eng; 2021; 2021():8769652. PubMed ID: 34745513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.