These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31773580)

  • 21. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A.
    Pruitt RN; Chagot B; Cover M; Chazin WJ; Spiller B; Lacy DB
    J Biol Chem; 2009 Aug; 284(33):21934-21940. PubMed ID: 19553670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient and rapid affinity purification of proteins using recombinant fusion proteases.
    Walker PA; Leong LE; Ng PW; Tan SH; Waller S; Murphy D; Porter AG
    Biotechnology (N Y); 1994 Jun; 12(6):601-5. PubMed ID: 7764949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.
    Egerer M; Giesemann T; Jank T; Satchell KJ; Aktories K
    J Biol Chem; 2007 Aug; 282(35):25314-21. PubMed ID: 17591770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A self-cleavable sortase fusion for one-step purification of free recombinant proteins.
    Mao H
    Protein Expr Purif; 2004 Sep; 37(1):253-63. PubMed ID: 15294306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New donor vector for generation of histidine-tagged fusion proteins using the Gateway Cloning System.
    Parr RD; Ball JM
    Plasmid; 2003 Mar; 49(2):179-83. PubMed ID: 12726771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single step purification of recombinant proteins using the metal ion-inducible autocleavage (MIIA) domain as linker for tag removal.
    Ibe S; Schirrmeister J; Zehner S
    J Biotechnol; 2015 Aug; 208():22-7. PubMed ID: 26026704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput T7 LIC vector for introducing C-terminal poly-histidine tags with variable lengths without extra sequences.
    Lee J; Kim SH
    Protein Expr Purif; 2009 Jan; 63(1):58-61. PubMed ID: 18824233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid purification and crystal structure analysis of a small protein carrying two terminal affinity tags.
    Mueller U; Büssow K; Diehl A; Bartl FJ; Niesen FH; Nyarsik L; Heinemann U
    J Struct Funct Genomics; 2003; 4(4):217-25. PubMed ID: 15185962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression and purification of histidine-tagged proteins from the gram-positive Streptococcus gordonii SPEX system.
    Myscofski DM; Dutton EK; Bolken TC; Franke CA; Hruby DE
    Protein Expr Purif; 2000 Oct; 20(1):112-23. PubMed ID: 11035959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient and Flexible Preparation of Biosynthetic Microperoxidases.
    Kleingardner EC; Asher WB; Bren KL
    Biochemistry; 2017 Jan; 56(1):143-148. PubMed ID: 27957837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of recombinant fusion proteases in the affinity purification of recombinant proteins.
    Leong LE
    Mol Biotechnol; 1999 Oct; 12(3):269-74. PubMed ID: 10631683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.
    Karakus C; Uslu M; Yazici D; Salih BA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 May; 1021():182-187. PubMed ID: 26657801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of the protein oligomericity on final yield after affinity tag removal in purification of recombinant proteins.
    Kenig M; Peternel S; Gaberc-Porekar V; Menart V
    J Chromatogr A; 2006 Jan; 1101(1-2):293-306. PubMed ID: 16256128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of employing poly-lysine tags versus poly-histidine tags for purification and characterization of recombinant copper-binding proteins.
    Wijekoon CJK; Ukuwela AA; Wedd AG; Xiao Z
    J Inorg Biochem; 2016 Sep; 162():286-294. PubMed ID: 26766000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-cleaving fusion tags for recombinant protein production.
    Li Y
    Biotechnol Lett; 2011 May; 33(5):869-81. PubMed ID: 21267760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production.
    Cabrita LD; Dai W; Bottomley SP
    BMC Biotechnol; 2006 Mar; 6():12. PubMed ID: 16509985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inositol hexakisphosphate-dependent processing of Clostridium sordellii lethal toxin and Clostridium novyi alpha-toxin.
    Guttenberg G; Papatheodorou P; Genisyuerek S; Lü W; Jank T; Einsle O; Aktories K
    J Biol Chem; 2011 Apr; 286(17):14779-86. PubMed ID: 21385871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Systematic analysis of the expression, solubility and purification of a passenger protein in fusion with different tags.
    Bernier SC; Cantin L; Salesse C
    Protein Expr Purif; 2018 Dec; 152():92-106. PubMed ID: 30036588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorptive detagging of poly-histidine tagged protein using hexa-histidine tagged exopeptidase.
    Kuo WH; Chase HA
    J Chromatogr A; 2010 Dec; 1217(49):7749-58. PubMed ID: 21055759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification of Membrane Proteins by Affinity Chromatography with On-Column Protease Cleavage.
    Hirschi S; Fotiadis D
    Methods Mol Biol; 2020; 2127():139-150. PubMed ID: 32112320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.