BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31774117)

  • 1. ATP-dependent thermostabilization of human P-glycoprotein (ABCB1) is blocked by modulators.
    Lusvarghi S; Ambudkar SV
    Biochem J; 2019 Dec; 476(24):3737-3750. PubMed ID: 31774117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein.
    Chufan EE; Kapoor K; Ambudkar SV
    Biochem Pharmacol; 2016 Feb; 101():40-53. PubMed ID: 26686578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions.
    Shukla S; Abel B; Chufan EE; Ambudkar SV
    J Biol Chem; 2017 Apr; 292(17):7066-7076. PubMed ID: 28283574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate-induced conformational changes in the nucleotide-binding domains of lipid bilayer-associated P-glycoprotein during ATP hydrolysis.
    Zoghbi ME; Mok L; Swartz DJ; Singh A; Fendley GA; Urbatsch IL; Altenberg GA
    J Biol Chem; 2017 Dec; 292(50):20412-20424. PubMed ID: 29018094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the ATP-bound EQ mutant reflect the pre- or post-ATP hydrolysis state in the catalytic cycle of human P-glycoprotein (ABCB1)?
    Lusvarghi S; Durell SR; Ambudkar SV
    FEBS Lett; 2021 Mar; 595(6):750-762. PubMed ID: 33547668
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Futamata R; Ogasawara F; Ichikawa T; Kodan A; Kimura Y; Kioka N; Ueda K
    J Biol Chem; 2020 Apr; 295(15):5002-5011. PubMed ID: 32111736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperativity between verapamil and ATP bound to the efflux transporter P-glycoprotein.
    Ledwitch KV; Gibbs ME; Barnes RW; Roberts AG
    Biochem Pharmacol; 2016 Oct; 118():96-108. PubMed ID: 27531061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Coupling of Binding, ATP Hydrolysis, and Transport of Fluorescent Probes with P-Glycoprotein in Lipid Nanodiscs.
    Li MJ; Nath A; Atkins WM
    Biochemistry; 2017 May; 56(19):2506-2517. PubMed ID: 28441502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of multidrug resistance-linked P-glycoprotein (ABCB1) function by 5'-fluorosulfonylbenzoyl 5'-adenosine: evidence for an ATP analogue that interacts with both drug-substrate-and nucleotide-binding sites.
    Ohnuma S; Chufan E; Nandigama K; Jenkins LM; Durell SR; Appella E; Sauna ZE; Ambudkar SV
    Biochemistry; 2011 May; 50(18):3724-35. PubMed ID: 21452853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteines introduced into extracellular loops 1 and 4 of human P-glycoprotein that are close only in the open conformation spontaneously form a disulfide bond that inhibits drug efflux and ATPase activity.
    Loo TW; Clarke DM
    J Biol Chem; 2014 Sep; 289(36):24749-58. PubMed ID: 25053414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of breast cancer resistance protein (Abcg2) and p-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec) across the mouse blood-brain barrier.
    Bihorel S; Camenisch G; Lemaire M; Scherrmann JM
    J Neurochem; 2007 Sep; 102(6):1749-1757. PubMed ID: 17696988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Both ATP sites of human P-glycoprotein are essential but not symmetric.
    Hrycyna CA; Ramachandra M; Germann UA; Cheng PW; Pastan I; Gottesman MM
    Biochemistry; 1999 Oct; 38(42):13887-99. PubMed ID: 10529234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global alteration of the drug-binding pocket of human P-glycoprotein (ABCB1) by substitution of fifteen conserved residues reveals a negative correlation between substrate size and transport efficiency.
    Vahedi S; Chufan EE; Ambudkar SV
    Biochem Pharmacol; 2017 Nov; 143():53-64. PubMed ID: 28728917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of allosteric modulation of P-glycoprotein by transport substrates and inhibitors.
    Dastvan R; Mishra S; Peskova YB; Nakamoto RK; Mchaourab HS
    Science; 2019 May; 364(6441):689-692. PubMed ID: 31097669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide binding, ATP hydrolysis, and mutation of the catalytic carboxylates of human P-glycoprotein cause distinct conformational changes in the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2007 Aug; 46(32):9328-36. PubMed ID: 17636884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM Analysis of the Conformational Landscape of Human P-glycoprotein (ABCB1) During its Catalytic Cycle.
    Frank GA; Shukla S; Rao P; Borgnia MJ; Bartesaghi A; Merk A; Mobin A; Esser L; Earl LA; Gottesman MM; Xia D; Ambudkar SV; Subramaniam S
    Mol Pharmacol; 2016 Jul; 90(1):35-41. PubMed ID: 27190212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Insights into Allosteric Conformational Modulation of P-Glycoprotein by Substrate and Inhibitor Binding.
    Xing J; Huang S; Heng Y; Mei H; Pan X
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33353070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Q loops of the human multidrug resistance transporter ABCB1 are necessary to couple drug binding to the ATP catalytic cycle.
    Zolnerciks JK; Akkaya BG; Snippe M; Chiba P; Seelig A; Linton KJ
    FASEB J; 2014 Oct; 28(10):4335-46. PubMed ID: 25016028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the Binding Site of the Inhibitor Tariquidar That Stabilizes the First Transmembrane Domain of P-glycoprotein.
    Loo TW; Clarke DM
    J Biol Chem; 2015 Dec; 290(49):29389-401. PubMed ID: 26507655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the vectorial nature of drug (substrate)-stimulated ATP hydrolysis by human P-glycoprotein.
    Sauna ZE; Smith MM; Müller M; Ambudkar SV
    J Biol Chem; 2001 Sep; 276(36):33301-4. PubMed ID: 11451943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.