These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31774268)

  • 1. Highly Sensitive Nondestructive Rare Earth Element Detection by Means of Wavelength-Dispersive X-ray Fluorescence Spectroscopy Enabled by an Energy Dispersive pn-Charge-Coupled-Device Detector.
    De Pauw E; Tack P; Lindner M; Ashauer A; Garrevoet J; Vekemans B; Falkenberg G; Brenker FE; Vincze L
    Anal Chem; 2020 Jan; 92(1):1106-1113. PubMed ID: 31774268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-energy interference-free K-lines synchrotron X-ray fluorescence microscopy of rare earth elements in hyperaccumulator plants.
    van der Ent A; Brueckner D; Spiers KM; Falch KV; Falkenberg G; Layet C; Liu WS; Zheng HX; Le Jean M; Blaudez D
    Metallomics; 2023 Sep; 15(9):. PubMed ID: 37591604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelength dispersive X-ray fluorescence imaging.
    Tsuji K; Ohmori T; Yamaguchi M
    Anal Chem; 2011 Aug; 83(16):6389-94. PubMed ID: 21749148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Element-specific detection in capillary electrophoresis using X-ray fluorescence spectroscopy.
    Mann SE; Ringo MC; Shea-McCarthy G; Penner-Hahn J; Evans CE
    Anal Chem; 2000 Apr; 72(8):1754-8. PubMed ID: 10784138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methodology toward 3D micro X-ray fluorescence imaging using an energy dispersive charge-coupled device detector.
    Garrevoet J; Vekemans B; Tack P; De Samber B; Schmitz S; Brenker FE; Falkenberg G; Vincze L
    Anal Chem; 2014 Dec; 86(23):11826-32. PubMed ID: 25346101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of highly energetic (116 keV) synchrotron radiation for X-ray fluorescence analysis of trace rare-earth and heavy elements.
    Nakai I; Terada Y; Itou M; Sakurai Y
    J Synchrotron Radiat; 2001 Jul; 8(4):1078-81. PubMed ID: 11486358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-dispersive Laue diffraction by means of a pnCCD detector coupled to a CsI(Tl) scintillator using ultra-hard X-ray synchrotron radiation.
    Shokr M; Tosson A; Abboud A; Algashi A; Schlosser D; Hartmann R; Klaus M; Genzel C; Strüder L; Pietsch U
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1612-1620. PubMed ID: 31490151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Usefulness of a Dual Macro- and Micro-Energy-Dispersive X-Ray Fluorescence Spectrometer to Develop Quantitative Methodologies for Historic Mortar and Related Materials Characterization.
    García-Florentino C; Maguregui M; Romera-Fernández M; Queralt I; Margui E; Madariaga JM
    Anal Chem; 2018 May; 90(9):5795-5802. PubMed ID: 29641899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera.
    Scharf O; Ihle S; Ordavo I; Arkadiev V; Bjeoumikhov A; Bjeoumikhova S; Buzanich G; Gubzhokov R; Günther A; Hartmann R; Kühbacher M; Lang M; Langhoff N; Liebel A; Radtke M; Reinholz U; Riesemeier H; Soltau H; Strüder L; Thünemann AF; Wedell R
    Anal Chem; 2011 Apr; 83(7):2532-8. PubMed ID: 21355541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical note: Validation of energy dispersive X-ray fluorescence for determination of indigestible markers in ruminant fecal and rumen fluid samples.
    King ME; Foote AP
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37651116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for polychromatic X-ray μLaue diffraction on a Cu pillar using an energy-dispersive pn-junction charge-coupled device.
    Abboud A; Kirchlechner C; Send S; Micha JS; Ulrich O; Pashniak N; Strüder L; Keckes J; Pietsch U
    Rev Sci Instrum; 2014 Nov; 85(11):113901. PubMed ID: 25430118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory Setup for Scanning-Free Grazing Emission X-ray Fluorescence.
    Baumann J; Herzog C; Spanier M; Grötzsch D; Lühl L; Witte K; Jonas A; Günther S; Förste F; Hartmann R; Huth M; Kalok D; Steigenhöfer D; Krämer M; Holz T; Dietsch R; Strüder L; Kanngießer B; Mantouvalou I
    Anal Chem; 2017 Feb; 89(3):1965-1971. PubMed ID: 28105807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compact high-resolution spectrometer based on a segmented conical crystal analyzer.
    Robledo JI; Pérez CA; Sánchez HJ
    Rev Sci Instrum; 2020 Apr; 91(4):043105. PubMed ID: 32357694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of the Impact of Sample Thickness on Thin Film Method X-Ray Fluorescence Spectrum Measurement].
    Gan TT; Zhang YJ; Zhao NJ; Yin GF; Xiao X; Zhang W; Liu JG; Liu WQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):4039-44. PubMed ID: 30243271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macro and micro full field x-ray fluorescence with an X-ray pinhole camera presenting high energy and high spatial resolution.
    Romano FP; Caliri C; Cosentino L; Gammino S; Giuntini L; Mascali D; Neri L; Pappalardo L; Rizzo F; Taccetti F
    Anal Chem; 2014 Nov; 86(21):10892-9. PubMed ID: 25284509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave-dispersive x-ray spectrometer for simultaneous acquisition of several characteristic lines based on strongly and accurately shaped Ge crystal.
    Hayashi K; Nakajima K; Fujiwara K; Nishikata S
    Rev Sci Instrum; 2008 Mar; 79(3):033110. PubMed ID: 18377000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science.
    Doriese WB; Abbamonte P; Alpert BK; Bennett DA; Denison EV; Fang Y; Fischer DA; Fitzgerald CP; Fowler JW; Gard JD; Hays-Wehle JP; Hilton GC; Jaye C; McChesney JL; Miaja-Avila L; Morgan KM; Joe YI; O'Neil GC; Reintsema CD; Rodolakis F; Schmidt DR; Tatsuno H; Uhlig J; Vale LR; Ullom JN; Swetz DS
    Rev Sci Instrum; 2017 May; 88(5):053108. PubMed ID: 28571411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of X-ray Optics to Energy-Dispersive Spectroscopy.
    McCarthy JJ; McMillan DJ
    Microsc Microanal; 1998 Nov; 4(6):632-639. PubMed ID: 10087286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ArtTAX--a new mobile spectrometer for energy-dispersive micro X-ray fluorescence spectrometry on art and archaeological objects.
    Bronk H; Röhrs S; Bjeoumikhov A; Langhoff N; Schmalz J; Wedell R; Gorny HE; Herold A; Waldschläger U
    Fresenius J Anal Chem; 2001 Oct; 371(3):307-16. PubMed ID: 11688642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grazing-exit and micro X-ray fluorescence analyses for chemical microchips.
    Tsuji K; Emoto T; Nishida Y; Tamaki E; Kikutani Y; Hibara A; Kitamori T
    Anal Sci; 2005 Jul; 21(7):799-803. PubMed ID: 16038499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.