These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31774282)

  • 21. Effect of reduction temperature on the preparation and characterization of Pt-Ru nanoparticles on multiwalled carbon nanotubes.
    Chetty R; Xia W; Kundu S; Bron M; Reinecke T; Schuhmann W; Muhler M
    Langmuir; 2009 Apr; 25(6):3853-60. PubMed ID: 19708258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic Connections between CO
    Mansour H; Iglesia E
    J Am Chem Soc; 2021 Aug; 143(30):11582-11594. PubMed ID: 34288671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of the Photothermal Catalytic Mechanism of CO
    Novoa-Cid M; Baldovi HG
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33172154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing Active Sites for High CO Selectivity during CO
    Galhardo TS; Braga AH; Arpini BH; Szanyi J; Gonçalves RV; Zornio BF; Miranda CR; Rossi LM
    J Am Chem Soc; 2021 Mar; 143(11):4268-4280. PubMed ID: 33661617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the Reaction Mechanism in CO
    Ren Y; Xin C; Hao Z; Sun H; Bernasek SL; Chen W; Xu GQ
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2548-2554. PubMed ID: 31850736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Pt-enriched PtNi alloy surface and its excellent catalytic performance in hydrolytic hydrogenation of cellulose.
    Liang G; He L; Arai M; Zhao F
    ChemSusChem; 2014 May; 7(5):1415-21. PubMed ID: 24664493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts.
    Hsieh YC; Zhang Y; Su D; Volkov V; Si R; Wu L; Zhu Y; An W; Liu P; He P; Ye S; Adzic RR; Wang JX
    Nat Commun; 2013; 4():2466. PubMed ID: 24045405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation.
    Melaet G; Ralston WT; Li CS; Alayoglu S; An K; Musselwhite N; Kalkan B; Somorjai GA
    J Am Chem Soc; 2014 Feb; 136(6):2260-3. PubMed ID: 24460136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recycling of CO
    Heine C; Lechner BA; Bluhm H; Salmeron M
    J Am Chem Soc; 2016 Oct; 138(40):13246-13252. PubMed ID: 27599672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Encapsulating Co
    Yang Y; Liang X; Li F; Li S; Li X; Ng SP; Wu CL; Li R
    ChemSusChem; 2018 Jan; 11(2):376-388. PubMed ID: 29024394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO
    Bordet A; El Sayed S; Sanger M; Boniface KJ; Kalsi D; Luska KL; Jessop PG; Leitner W
    Nat Chem; 2021 Sep; 13(9):916-922. PubMed ID: 34226704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and Structural Evolution of Nickel-Cobalt Nanoparticles Under H2 and CO2.
    Carenco S; Wu CH; Shavorskiy A; Alayoglu S; Somorjai GA; Bluhm H; Salmeron M
    Small; 2015 Jul; 11(25):3045-53. PubMed ID: 25727527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics.
    Su F; Lv L; Lee FY; Liu T; Cooper AI; Zhao XS
    J Am Chem Soc; 2007 Nov; 129(46):14213-23. PubMed ID: 17973376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ruthenium-Cobalt Solid-Solution Alloy Nanoparticles for Enhanced Photopromoted Thermocatalytic CO
    Tang Y; Wang H; Guo C; Yang Z; Zhao T; Liu J; Jiang Y; Wang W; Zhang Q; Wu D; Zhao Y; Wen XD; Wang F
    ACS Nano; 2024 Apr; 18(17):11449-11461. PubMed ID: 38644575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.
    Chakroune N; Viau G; Ammar S; Poul L; Veautier D; Chehimi MM; Mangeney C; Villain F; Fiévet F
    Langmuir; 2005 Jul; 21(15):6788-96. PubMed ID: 16008388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis.
    Kitano M; Inoue Y; Sasase M; Kishida K; Kobayashi Y; Nishiyama K; Tada T; Kawamura S; Yokoyama T; Hara M; Hosono H
    Angew Chem Int Ed Engl; 2018 Mar; 57(10):2648-2652. PubMed ID: 29356337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface Segregation in CuNi Nanoparticle Catalysts During CO
    Zegkinoglou I; Pielsticker L; Han ZK; Divins NJ; Kordus D; Chen YT; Escudero C; Pérez-Dieste V; Zhu B; Gao Y; Cuenya BR
    J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(13):8421-8428. PubMed ID: 30976377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supported Co-Re Bimetallic Catalysts with Different Structures as Efficient Catalysts for Hydrogenation of Citral.
    Di X; Lafaye G; Especel C; Epron F; Qi J; Li C; Liang C
    ChemSusChem; 2019 Feb; 12(4):807-823. PubMed ID: 30620120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molybdenum carbide catalyst for the reduction of CO
    Reddy KP; Dama S; Mhamane NB; Ghosalya MK; Raja T; Satyanarayana CV; Gopinath CS
    Dalton Trans; 2019 Aug; 48(32):12199-12209. PubMed ID: 31334723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surfactants Used in Colloidal Synthesis Modulate Ni Nanoparticle Surface Evolution for Selective CO
    Wei X; Johnson G; Ye Y; Cui M; Yu SW; Ran Y; Cai J; Liu Z; Chen X; Gao W; Bean PJL; Zhang W; Zhao TY; Perras FA; Crumlin EJ; Zhang X; Davis RJ; Wu Z; Zhang S
    J Am Chem Soc; 2023 Jul; 145(26):14298-14306. PubMed ID: 37345939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.