These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31774344)

  • 1. Diagnostics in space: will zero gravity add weight to new advances?
    Wong S
    Expert Rev Mol Diagn; 2020 Jan; 20(1):1-4. PubMed ID: 31774344
    [No Abstract]   [Full Text] [Related]  

  • 2. Gravity amplifies and microgravity decreases circumnutations in Arabidopsis thaliana stems: results from a space experiment.
    Johnsson A; Solheim BGB; Iversen TH
    New Phytol; 2009; 182(3):621-629. PubMed ID: 19320838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station.
    Scherer GF; Pietrzyk P
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():97-106. PubMed ID: 24373011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Biological effects of weightlessness at the cellular level. Comparative study of cultures of Paramecia aboard the orbital station Salyut-6 and a stratospheric balloon].
    Richoilley G; Templier J; Bes JC; Gasset G; Planel H; Tixador R
    C R Acad Sci III; 1984; 299(20):845-8. PubMed ID: 6441618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The microgravity environment for experiments on the International Space Station.
    Nelson ES; Jules K
    J Gravit Physiol; 2004 Mar; 11(1):1-10. PubMed ID: 16145793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microflow1, a sheathless fiber-optic flow cytometry biomedical platform: demonstration onboard the international space station.
    Dubeau-Laramée G; Rivière C; Jean I; Mermut O; Cohen LY
    Cytometry A; 2014 Apr; 85(4):322-31. PubMed ID: 24339248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity.
    Link BM; Busse JS; Stankovic B
    Astrobiology; 2014 Oct; 14(10):866-75. PubMed ID: 25317938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The International Space Station as a microgravity research platform.
    Penley NJ; Schafer CP; Bartoe JD
    Acta Astronaut; 2002 Jun; 50(11):691-6. PubMed ID: 12035811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsome-associated proteome modifications of Arabidopsis seedlings grown on board the International Space Station reveal the possible effect on plants of space stresses other than microgravity.
    Mazars C; Brière C; Grat S; Pichereaux C; Rossignol M; Pereda-Loth V; Eche B; Boucheron-Dubuisson E; Le Disquet I; Medina FJ; Graziana A; Carnero-Diaz E
    Plant Signal Behav; 2014; 9(9):e29637. PubMed ID: 25763699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regenerative capacity of the planarian Girardia tigrina and the snail Helix lucorum exposed to microgravity during an orbital flight on board the International Space Station.
    Gorgiladze GI
    Dokl Biol Sci; 2008; 421():244-7. PubMed ID: 18841805
    [No Abstract]   [Full Text] [Related]  

  • 11. A status report on the characterization of the microgravity environment of the International Space Station.
    Jules K; McPherson K; Hrovat K; Kelly E; Reckart T
    Acta Astronaut; 2004; 55(3-9):335-64. PubMed ID: 15806740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interdisciplinary transport phenomena in microgravity and space sciences IV. Proceedings of a conference. August 7-12, 2005. Tomar, Portugal.
    Ann N Y Acad Sci; 2006 Sep; 1077():1-679. PubMed ID: 17274119
    [No Abstract]   [Full Text] [Related]  

  • 13. Changes in Exosomal miRNA Composition in Thyroid Cancer Cells after Prolonged Exposure to Real Microgravity in Space.
    Wise PM; Neviani P; Riwaldt S; Corydon TJ; Wehland M; Braun M; Krüger M; Infanger M; Grimm D
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station.
    Fitzgerald W; Chen S; Walz C; Zimmerberg J; Margolis L; Grivel JC
    In Vitro Cell Dev Biol Anim; 2009 Dec; 45(10):622-32. PubMed ID: 19609626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Gravity, Microgravity or Microgravity Simulation on Early Mammalian Development.
    Ruden DM; Bolnick A; Awonuga A; Abdulhasan M; Perez G; Puscheck EE; Rappolee DA
    Stem Cells Dev; 2018 Sep; 27(18):1230-1236. PubMed ID: 29562866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microgravity promotes osteoclast activity in medaka fish reared at the international space station.
    Chatani M; Mantoku A; Takeyama K; Abduweli D; Sugamori Y; Aoki K; Ohya K; Suzuki H; Uchida S; Sakimura T; Kono Y; Tanigaki F; Shirakawa M; Takano Y; Kudo A
    Sci Rep; 2015 Sep; 5():14172. PubMed ID: 26387549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An innovative in vitro device providing continuous low doses of γ-rays mimicking exposure to the space environment: A dosimetric study.
    Pereda-Loth V; Franceries X; Afonso AS; Ayala A; Eche B; Ginibrière D; Gauquelin-Koch G; Bardiès M; Lacoste-Collin L; Courtade-Saïdi M
    Life Sci Space Res (Amst); 2018 Feb; 16():38-46. PubMed ID: 29475518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space.
    Hoson T; Soga K; Wakabayashi K; Hashimoto T; Karahara I; Yano S; Tanigaki F; Shimazu T; Kasahara H; Masuda D; Kamisaka S
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():91-6. PubMed ID: 24148142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased biofilm formation in Proteus mirabilis after short-term exposure to a simulated microgravity environment.
    Wang D; Bai P; Zhang B; Su X; Jiang X; Fang T; Wang J; Liu C
    Braz J Microbiol; 2021 Dec; 52(4):2021-2030. PubMed ID: 34558030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-Body Movements in Long-Term Weightlessness: Hierarchies of the Controlled Variables Are Gravity-Dependent.
    Casellato C; Pedrocchi A; Ferrigno G
    J Mot Behav; 2017; 49(5):568-579. PubMed ID: 28027021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.