These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31774644)

  • 1. Rapid Degradation of Poly(lactic acid) with Organometallic Catalysts.
    Garg M; White SR; Sottos NR
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46226-46232. PubMed ID: 31774644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical treatment of poly(lactic acid) fibers to enhance the rate of thermal depolymerization.
    Dong H; Esser-Kahn AP; Thakre PR; Patrick JF; Sottos NR; White SR; Moore JS
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):503-9. PubMed ID: 22008224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(hexyl-substituted lactides): novel injectable hydrophobic drug delivery systems.
    Trimaille T; Gurny R; Möller M
    J Biomed Mater Res A; 2007 Jan; 80(1):55-65. PubMed ID: 16958050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal degradation kinetics of sucrose palmitate reinforced poly(lactic acid) biocomposites.
    Valapa R; Pugazhenthi G; Katiyar V
    Int J Biol Macromol; 2014 Apr; 65():275-83. PubMed ID: 24472504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding thermal decomposition kinetics of flame-retardant thermoset polylactic acid.
    Li Y; Qiang Z; Chen X; Ren J
    RSC Adv; 2019 Jan; 9(6):3128-3139. PubMed ID: 35518982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process of making three-dimensional microstructures using vaporization of a sacrificial component.
    Nguyen du T; Leho YT; Esser-Kahn AP
    J Vis Exp; 2013 Nov; (81):e50459. PubMed ID: 24300342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composites Based on Poly(Lactic Acid) (PLA) and SBA-15: Effect of Mesoporous Silica on Thermal Stability and on Isothermal Crystallization from Either Glass or Molten State.
    Díez-Rodríguez TM; Blázquez-Blázquez E; Pérez E; Cerrada ML
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33227923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystallization behavior of poly(lactic acid) with different types of nucleating agents.
    Feng Y; Ma P; Xu P; Wang R; Dong W; Chen M; Joziasse C
    Int J Biol Macromol; 2018 Jan; 106():955-962. PubMed ID: 28830776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoamphiphilic Chitosan Dispersed Poly(lactic acid) Bionanocomposite Films with Improved Thermal, Mechanical, and Gas Barrier Properties.
    Pal AK; Katiyar V
    Biomacromolecules; 2016 Aug; 17(8):2603-18. PubMed ID: 27332934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal degradation behaviour and crystallization kinetics of poly (lactic acid) and cellulose nanocrystals (CNC) based microcellular composite foams.
    Borkotoky SS; Chakraborty G; Katiyar V
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1518-1531. PubMed ID: 29981330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tacticity-induced changes in the micellization and degradation properties of poly(lactic acid)-block-poly(ethylene glycol) copolymers.
    Agatemor C; Shaver MP
    Biomacromolecules; 2013 Mar; 14(3):699-708. PubMed ID: 23402292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil burial-induced chemical and thermal changes in starch/poly (lactic acid) composites.
    Lv S; Zhang Y; Gu J; Tan H
    Int J Biol Macromol; 2018 Jul; 113():338-344. PubMed ID: 29481951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of amorphous cellulose on mechanical, thermal, and hydrolytic degradation of poly(lactic acid) biocomposites.
    Wan Ishak WH; Rosli NA; Ahmad I
    Sci Rep; 2020 Jul; 10(1):11342. PubMed ID: 32647369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medical-Grade Poly(Lactic Acid)/Hydroxyapatite Composite Films: Thermal and In Vitro Degradation Properties.
    Bauer L; Rogina A; Ivanković M; Ivanković H
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sn(II)/PN@AC catalysts: synthesis, physical-chemical characterization, and applications.
    Wu Y; Li F; Li Q; Han Y; Wang L; Ma W; Xv F
    Turk J Chem; 2021; 45(5):1476-1487. PubMed ID: 34849061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites.
    Kyutoku H; Maeda N; Sakamoto H; Nishimura H; Yamada K
    Carbohydr Polym; 2019 Jan; 203():95-102. PubMed ID: 30318239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxa-thia-, oxa-selena and crown ether macrocyclic complexes of tin(II) tetrafluoroborate and hexafluorophosphate--synthesis, properties and structures.
    Beattie C; Farina P; Levason W; Reid G
    Dalton Trans; 2013 Nov; 42(42):15183-90. PubMed ID: 24000049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of plasma glow, glutaraldehyde and carbodiimide treatments on the enzymic degradation of poly (L-lactic acid) and poly (gamma-benzyl-L-glutamate) films.
    Chandy T; Sharma CP
    Biomaterials; 1991 Sep; 12(7):677-82. PubMed ID: 1720676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The key role of unique crystalline property in the hydrolytic degradation process of microcrystalline cellulose-reinforced stereo-complexed poly(lactic acid) composites.
    Cheng Z; Wang Q; Lei L; Zhao B; Yu T; Fan J; Li Y
    Int J Biol Macromol; 2024 Jul; 275(Pt 1):133656. PubMed ID: 38969048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green Copolymers Based on Poly(Lactic Acid)-Short Review.
    Stefaniak K; Masek A
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.