These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 31774649)
1. Texturization-Induced In-Plane High-Performance Thermoelectrics and Inapplicability of the Debye Model to Out-of-Plane Lattice Thermal Conductivity in Misfit-Layered Chalcogenides. Yin C; Liu H; Hu Q; Tang J; Pei Y; Ang R ACS Appl Mater Interfaces; 2019 Dec; 11(51):48079-48085. PubMed ID: 31774649 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides. Jood P; Ohta M Materials (Basel); 2015 Mar; 8(3):1124-1149. PubMed ID: 28787992 [TBL] [Abstract][Full Text] [Related]
3. Realization of an Ultrahigh Power Factor and Enhanced Thermoelectric Performance in TiS Gu Y; Song K; Hu X; Chen C; Pan L; Lu C; Shen X; Koumoto K; Wang Y ACS Appl Mater Interfaces; 2020 Sep; 12(37):41687-41695. PubMed ID: 32805870 [TBL] [Abstract][Full Text] [Related]
4. Enhancing the Thermoelectric Properties of Misfit Layered Sulfides (MS) Sotnikov AV; Jood P; Ohta M ACS Omega; 2020 Jun; 5(22):13006-13013. PubMed ID: 32548485 [TBL] [Abstract][Full Text] [Related]
5. Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Wan C; Wang Y; Wang N; Norimatsu W; Kusunoki M; Koumoto K Sci Technol Adv Mater; 2010 Aug; 11(4):044306. PubMed ID: 27877347 [TBL] [Abstract][Full Text] [Related]
6. Layered Tin Chalcogenides SnS and SnSe: Lattice Thermal Conductivity Benchmarks and Thermoelectric Figure of Merit. Rundle J; Leoni S J Phys Chem C Nanomater Interfaces; 2022 Aug; 126(33):14036-14046. PubMed ID: 36051253 [TBL] [Abstract][Full Text] [Related]
7. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Wan C; Gu X; Dang F; Itoh T; Wang Y; Sasaki H; Kondo M; Koga K; Yabuki K; Snyder GJ; Yang R; Koumoto K Nat Mater; 2015 Jun; 14(6):622-7. PubMed ID: 25849369 [TBL] [Abstract][Full Text] [Related]
8. Breaking the Minimum Limit of Thermal Conductivity of Mg Hu J; Zhu J; Dong X; Guo M; Sun Y; Shi W; Zhu Y; Wu H; Guo F; Zhang YX; Ge ZH; Zhang Q; Liu Z; Cai W; Sui J Small; 2023 Aug; 19(33):e2301382. PubMed ID: 37086113 [TBL] [Abstract][Full Text] [Related]
9. The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials. Banik A; Roychowdhury S; Biswas K Chem Commun (Camb); 2018 Jun; 54(50):6573-6590. PubMed ID: 29749410 [TBL] [Abstract][Full Text] [Related]
10. Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material. Sun BZ; Ma Z; He C; Wu K Phys Chem Chem Phys; 2015 Nov; 17(44):29844-53. PubMed ID: 26486877 [TBL] [Abstract][Full Text] [Related]
11. On the effects of substitution, intercalation, non-stoichiometry and block layer concept in TiS2 based thermoelectrics. Guilmeau E; Maignan A; Wan C; Koumoto K Phys Chem Chem Phys; 2015 Oct; 17(38):24541-55. PubMed ID: 26343362 [TBL] [Abstract][Full Text] [Related]
12. Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe) Samanta M; Roychowdhury S; Ghatak J; Perumal S; Biswas K Chemistry; 2017 Jun; 23(31):7438-7443. PubMed ID: 28436062 [TBL] [Abstract][Full Text] [Related]
13. Low Sound Velocity Contributing to the High Thermoelectric Performance of Ag Li W; Lin S; Ge B; Yang J; Zhang W; Pei Y Adv Sci (Weinh); 2016 Nov; 3(11):1600196. PubMed ID: 27980995 [TBL] [Abstract][Full Text] [Related]
14. High Quality Factor Enabled by Multiscale Phonon Scattering for Enhancing Thermoelectrics in Low-Solubility n-Type PbTe-Cu Liu H; Chen Z; Tang J; Zhong Y; Guo X; Zhang F; Ang R ACS Appl Mater Interfaces; 2020 Nov; 12(47):52952-52958. PubMed ID: 33180452 [TBL] [Abstract][Full Text] [Related]
15. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride. Mohanta MK; Rawat A; Dimple ; Jena N; Ahammed R; De Sarkar A Nanoscale; 2019 Nov; 11(45):21880-21890. PubMed ID: 31697290 [TBL] [Abstract][Full Text] [Related]
16. Cu Jiang L; Han L; Lu C; Yang S; Liu Y; Jiang H; Yan Y; Tang X; Yang D ACS Appl Mater Interfaces; 2021 Mar; 13(10):11977-11984. PubMed ID: 33685121 [TBL] [Abstract][Full Text] [Related]
17. Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te-Sb An D; Chen S; Lu Z; Li R; Chen W; Fan W; Wang W; Wu Y ACS Appl Mater Interfaces; 2019 Aug; 11(31):27788-27797. PubMed ID: 31287652 [TBL] [Abstract][Full Text] [Related]
18. Ternary selenides A Lee C; Kim S; Son WJ; Shim JH; Whangbo MH RSC Adv; 2020 Apr; 10(24):14415-14421. PubMed ID: 35498457 [TBL] [Abstract][Full Text] [Related]
19. Manipulating Localized Vibrations of Interstitial Te for Ultra-High Thermoelectric Efficiency in p-Type Cu-In-Te Systems. Ren T; Han Z; Ying P; Li X; Li X; Lin X; Sarker D; Cui J ACS Appl Mater Interfaces; 2019 Sep; 11(35):32192-32199. PubMed ID: 31442031 [TBL] [Abstract][Full Text] [Related]
20. Misfit Layer Compounds and Ferecrystals: Model Systems for Thermoelectric Nanocomposites. Merrill DR; Moore DB; Bauers SR; Falmbigl M; Johnson DC Materials (Basel); 2015 Apr; 8(4):2000-2029. PubMed ID: 28788045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]