These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31774666)
1. Control of Protein Conformation and Orientation on Graphene. Wei S; Zou X; Tian J; Huang H; Guo W; Chen Z J Am Chem Soc; 2019 Dec; 141(51):20335-20343. PubMed ID: 31774666 [TBL] [Abstract][Full Text] [Related]
2. Interactions between avidin and graphene for development of a biosensing platform. Macwan I; Khan MDH; Aphale A; Singh S; Liu J; Hingorani M; Patra P Biosens Bioelectron; 2017 Mar; 89(Pt 1):326-333. PubMed ID: 27459884 [TBL] [Abstract][Full Text] [Related]
3. Investigation of Controllable Nanoscale Heat-Denatured Bovine Serum Albumin Films on Graphene. Zhou L; Wang K; Wu Z; Dong H; Sun H; Cheng X; Zhang HL; Zhou H; Jia C; Jin Q; Mao H; Coll JL; Zhao J Langmuir; 2016 Dec; 32(48):12623-12631. PubMed ID: 27934532 [TBL] [Abstract][Full Text] [Related]
4. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface. Ou L; Luo Y; Wei G J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466 [TBL] [Abstract][Full Text] [Related]
5. Van der Waals force: a dominant factor for reactivity of graphene. Lee JH; Avsar A; Jung J; Tan JY; Watanabe K; Taniguchi T; Natarajan S; Eda G; Adam S; Castro Neto AH; Özyilmaz B Nano Lett; 2015 Jan; 15(1):319-25. PubMed ID: 25493357 [TBL] [Abstract][Full Text] [Related]
6. How graphene affects the misfolding of human prion protein: A combined experimental and molecular dynamics simulation study. Zhu Y; Guo J; Zhang A; Li L; Liu X; Liu H; Yao X Environ Res; 2019 Apr; 171():1-10. PubMed ID: 30641367 [TBL] [Abstract][Full Text] [Related]
8. Computation of the binding free energy of peptides to graphene in explicit water. Welch CM; Camden AN; Barr SA; Leuty GM; Kedziora GS; Berry RJ J Chem Phys; 2015 Jul; 143(4):045104. PubMed ID: 26233167 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications. Lu X; Wang X; Jin J; Zhang Q; Chen J Biosens Bioelectron; 2014 Dec; 62():134-9. PubMed ID: 24997366 [TBL] [Abstract][Full Text] [Related]
10. Molecular Interactions between Graphene and Biological Molecules. Zou X; Wei S; Jasensky J; Xiao M; Wang Q; Brooks Iii CL; Chen Z J Am Chem Soc; 2017 Feb; 139(5):1928-1936. PubMed ID: 28092440 [TBL] [Abstract][Full Text] [Related]
11. Hydration patterns of graphene-based nanomaterials (GBNMs) play a major role in the stability of a helical protein: a molecular dynamics simulation study. Baweja L; Balamurugan K; Subramanian V; Dhawan A Langmuir; 2013 Nov; 29(46):14230-8. PubMed ID: 24144078 [TBL] [Abstract][Full Text] [Related]
12. Structure of a peptide adsorbed on graphene and graphite. Katoch J; Kim SN; Kuang Z; Farmer BL; Naik RR; Tatulian SA; Ishigami M Nano Lett; 2012 May; 12(5):2342-6. PubMed ID: 22471315 [TBL] [Abstract][Full Text] [Related]
13. Improving the binding characteristics of tripodal compounds on single layer graphene. Mann JA; Dichtel WR ACS Nano; 2013 Aug; 7(8):7193-9. PubMed ID: 23859629 [TBL] [Abstract][Full Text] [Related]
14. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Yildiz G; Bolton-Warberg M; Awaja F Acta Biomater; 2021 Sep; 131():62-79. PubMed ID: 34237423 [TBL] [Abstract][Full Text] [Related]
15. Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy. Ding B; Jasensky J; Li Y; Chen Z Acc Chem Res; 2016 Jun; 49(6):1149-57. PubMed ID: 27188920 [TBL] [Abstract][Full Text] [Related]
16. Control of the graphene-protein interface is required to preserve adsorbed protein function. Alava T; Mann JA; Théodore C; Benitez JJ; Dichtel WR; Parpia JM; Craighead HG Anal Chem; 2013 Mar; 85(5):2754-9. PubMed ID: 23363062 [TBL] [Abstract][Full Text] [Related]
17. Structural Disruption of an Adenosine-Binding DNA Aptamer on Graphene: Implications for Aptasensor Design. Hughes ZE; Walsh TR ACS Sens; 2017 Nov; 2(11):1602-1611. PubMed ID: 29063764 [TBL] [Abstract][Full Text] [Related]
18. Dispersion of graphene sheets in aqueous solution by oligodeoxynucleotides. Liang LJ; Wu T; Kang Y; Wang Q Chemphyschem; 2013 Jun; 14(8):1626-32. PubMed ID: 23554343 [TBL] [Abstract][Full Text] [Related]
19. Magnetic nanoparticle decorated graphene based electrochemical nanobiosensor for H Waifalkar PP; Chougale AD; Kollu P; Patil PS; Patil PB Colloids Surf B Biointerfaces; 2018 Jul; 167():425-431. PubMed ID: 29705665 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene. Zheng C; Huang L; Zhang H; Sun Z; Zhang Z; Zhang GJ ACS Appl Mater Interfaces; 2015 Aug; 7(31):16953-9. PubMed ID: 26203889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]