BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31774725)

  • 1. Basic-hydrophobic sites are localized in conserved positions inside and outside of PH domains and affect localization of
    Brzeska H; Gonzalez J; Korn ED; Titus MA
    Mol Biol Cell; 2020 Jan; 31(2):101-117. PubMed ID: 31774725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective localization of myosin-I proteins in macropinosomes and actin waves.
    Brzeska H; Koech H; Pridham KJ; Korn ED; Titus MA
    Cytoskeleton (Hoboken); 2016 Feb; 73(2):68-82. PubMed ID: 26801966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dictyostelium myosin 1F and myosin 1E inhibit actin waves in a lipid-binding-dependent and motor-independent manner.
    Brzeska H; Bagnoli M; Korn ED; Titus MA
    Cytoskeleton (Hoboken); 2020 Aug; 77(8):295-302. PubMed ID: 32734648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The association of myosin IB with actin waves in dictyostelium requires both the plasma membrane-binding site and actin-binding region in the myosin tail.
    Brzeska H; Pridham K; Chery G; Titus MA; Korn ED
    PLoS One; 2014; 9(4):e94306. PubMed ID: 24747353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of dynamic relocalization of Dictyostelium myosin IB.
    Brzeska H; Guag J; Preston GM; Titus MA; Korn ED
    J Biol Chem; 2012 Apr; 287(18):14923-36. PubMed ID: 22367211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myosin I links PIP3 signaling to remodeling of the actin cytoskeleton in chemotaxis.
    Chen CL; Wang Y; Sesaki H; Iijima M
    Sci Signal; 2012 Jan; 5(209):ra10. PubMed ID: 22296834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myosin 1G is an abundant class I myosin in lymphocytes whose localization at the plasma membrane depends on its ancient divergent pleckstrin homology (PH) domain (Myo1PH).
    Patino-Lopez G; Aravind L; Dong X; Kruhlak MJ; Ostap EM; Shaw S
    J Biol Chem; 2010 Mar; 285(12):8675-86. PubMed ID: 20071333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism, regulation, and functional properties of Dictyostelium myosin-1B.
    Tsiavaliaris G; Fujita-Becker S; Dürrwang U; Diensthuber RP; Geeves MA; Manstein DJ
    J Biol Chem; 2008 Feb; 283(8):4520-7. PubMed ID: 18089562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains.
    Jung G; Remmert K; Wu X; Volosky JM; Hammer JA
    J Cell Biol; 2001 Jun; 153(7):1479-97. PubMed ID: 11425877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor and tail homology 1 (Th1) domains antagonistically control myosin-1 dynamics.
    Mazerik JN; Kraft LJ; Kenworthy AK; Tyska MJ
    Biophys J; 2014 Feb; 106(3):649-58. PubMed ID: 24507605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of the hydrophobic triplet in the motor domain of myosin in the interaction between myosin and actin.
    Hachikubo Y; Ito K; Yamamoto K
    J Biochem; 2003 Jul; 134(1):165-71. PubMed ID: 12944384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dictyostelium myosin II as a model to study the actin-myosin interactions during force generation.
    Sasaki N; Ohkura R; Sutoh K
    J Muscle Res Cell Motil; 2002; 23(7-8):697-702. PubMed ID: 12952068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myosin heavy-chain kinase A from Dictyostelium possesses a novel actin-binding domain that cross-links actin filaments.
    Russ M; Croft D; Ali O; Martinez R; Steimle PA
    Biochem J; 2006 Apr; 395(2):373-83. PubMed ID: 16372899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin-binding domains mediate the distinct distribution of two Dictyostelium Talins through different affinities to specific subsets of actin filaments during directed cell migration.
    Tsujioka M; Uyeda TQP; Iwadate Y; Patel H; Shibata K; Yumoto T; Yonemura S
    PLoS One; 2019; 14(4):e0214736. PubMed ID: 30946777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of structural dynamics of actin in class-specific myosin motility.
    Noguchi TQ; Morimatsu M; Iwane AH; Yanagida T; Uyeda TQ
    PLoS One; 2015; 10(5):e0126262. PubMed ID: 25945499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insertion or deletion of a single residue in the strut sequence of Dictyostelium myosin II abolishes strong binding to actin.
    Sasaki N; Ohkura R; Sutoh K
    J Biol Chem; 2000 Dec; 275(49):38705-9. PubMed ID: 11005804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The actin binding site in the tail domain of Dictyostelium myosin IC (myoC) resides within the glycine- and proline-rich sequence (tail homology region 2).
    Jung G; Hammer JA
    FEBS Lett; 1994 Apr; 342(2):197-202. PubMed ID: 8143877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-bound myo1c powers asymmetric motility of actin filaments.
    Pyrpassopoulos S; Feeser EA; Mazerik JN; Tyska MJ; Ostap EM
    Curr Biol; 2012 Sep; 22(18):1688-92. PubMed ID: 22863317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Dictyostelium myosin I and II.
    de la Roche MA; Côté GP
    Biochim Biophys Acta; 2001 Mar; 1525(3):245-61. PubMed ID: 11257438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila class-I myosins that can impact left-right asymmetry have distinct ATPase kinetics.
    Báez-Cruz FA; Ostap EM
    J Biol Chem; 2023 Aug; 299(8):104961. PubMed ID: 37380077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.