These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31774779)

  • 41. From classical four-wave mixing to parametric fluorescence in silicon microring resonators.
    Azzini S; Grassani D; Galli M; Andreani LC; Sorel M; Strain MJ; Helt LG; Sipe JE; Liscidini M; Bajoni D
    Opt Lett; 2012 Sep; 37(18):3807-9. PubMed ID: 23041866
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dispersion engineered high quality lithium niobate microring resonators.
    He Y; Liang H; Luo R; Li M; Lin Q
    Opt Express; 2018 Jun; 26(13):16315-16322. PubMed ID: 30119464
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quasi-phase-matched four-wave mixing generation between C-band and mid-infrared regions using a symmetric hybrid plasmonic waveguide grating.
    Dai J; Zhang M; Zhou F; Wang Y; Lu L; Deng L; Liu D
    Appl Opt; 2015 Aug; 54(23):6961-8. PubMed ID: 26368362
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single-crystal 3C-SiC-on-insulator platform for integrated quantum photonics.
    Wang Y; Lin Q; Feng PX
    Opt Express; 2021 Jan; 29(2):1011-1022. PubMed ID: 33726324
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical microring resonators in fluorineimplanted lithium niobate.
    Majkic A; Koechlin M; Poberaj G; Günter P
    Opt Express; 2008 Jun; 16(12):8769-79. PubMed ID: 18545590
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal.
    Hu X; Long Y; Ji M; Wang A; Zhu L; Ruan Z; Wang Y; Wang J
    Opt Express; 2016 Apr; 24(7):7168-77. PubMed ID: 27137009
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Q ultrasensitive integrated photonic sensors based on slot-ring resonator on a 3C-SiC-on-insulator platform.
    Wu X; Fan T; Eftekhar AA; Hosseinnia AH; Adibi A
    Opt Lett; 2021 Sep; 46(17):4316-4319. PubMed ID: 34470003
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.
    Matsuda N; Kato T; Harada K; Takesue H; Kuramochi E; Taniyama H; Notomi M
    Opt Express; 2011 Oct; 19(21):19861-74. PubMed ID: 21996994
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuously tunable reflective-type optical delay lines using microring resonators.
    Xie J; Zhou L; Zou Z; Wang J; Li X; Chen J
    Opt Express; 2014 Jan; 22(1):817-23. PubMed ID: 24515041
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration.
    Ebnali-Heidari M; Monat C; Grillet C; Moravvej-Farshi MK
    Opt Express; 2009 Sep; 17(20):18340-53. PubMed ID: 19907625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides.
    Cooper ML; Gupta G; Schneider MA; Green WM; Assefa S; Xia F; Gifford DK; Mookherjea S
    Opt Lett; 2010 Sep; 35(18):3030-2. PubMed ID: 20847768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces.
    Long Y; Wang J
    Sci Rep; 2014 Jun; 4():5409. PubMed ID: 24958225
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Niobium-tantalum oxide as a material platform for linear and nonlinear integrated photonics.
    MacFarlane N; Schreyer-Miller A; Foster MA; Houck WD; Foster AC
    Opt Express; 2022 Nov; 30(23):42155-42167. PubMed ID: 36366674
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reverse pillar chalcogenide glass waveguides with ultraflat and low dispersion profile over an ultrawide bandwidth.
    Shi Y; Xu P; Shen X; Dai S; Nie Q
    Appl Opt; 2016 Feb; 55(5):1017-21. PubMed ID: 26906369
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tunable Q-factor silicon microring resonators for ultra-low power parametric processes.
    Strain MJ; Lacava C; Meriggi L; Cristiani I; Sorel M
    Opt Lett; 2015 Apr; 40(7):1274-7. PubMed ID: 25831311
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compact silicon microring resonators with ultra-low propagation loss in the C band.
    Xiao S; Khan MH; Shen H; Qi M
    Opt Express; 2007 Oct; 15(22):14467-75. PubMed ID: 19550724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide.
    Zhang Y; Hu X; Chen D; Wang L; Li M; Feng P; Xiao X; Yu S
    Opt Lett; 2018 Apr; 43(7):1586-1589. PubMed ID: 29601036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Silicon-rich nitride waveguides for ultra-broadband nonlinear signal processing.
    Dizaji MR; Krückel CJ; Fülöp A; Andrekson PA; Torres-Company V; Chen LR
    Opt Express; 2017 May; 25(11):12100-12108. PubMed ID: 28786568
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Broadband second-harmonic phase-matching in dispersion engineered slot waveguides.
    Kim S; Qi M
    Opt Express; 2016 Jan; 24(2):773-86. PubMed ID: 26832462
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Compact suspended silicon microring resonators with ultrahigh quality.
    Jiang WC; Zhang J; Lin Q
    Opt Express; 2014 Jan; 22(1):1187-92. PubMed ID: 24515079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.