These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31775220)

  • 21. Characterization of PDMS-modified glass from cast-and-peel fabrication.
    Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D
    Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of 3D Controlled in vitro Microenvironments.
    Ozdil B; Onal S; Oruc T; Pesen Okvur D
    MethodsX; 2014; 1():60-6. PubMed ID: 26150936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(dimethylsiloxane) electrospray devices fabricated with diamond-like carbon-poly(dimethylsiloxane) coated SU-8 masters.
    Huikko K; Ostman P; Grigoras K; Tuomikoski S; Tiainen VM; Soininen A; Puolanne K; Manz A; Franssila S; Kostiainen R; Kotiaho T
    Lab Chip; 2003 May; 3(2):67-72. PubMed ID: 15100784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bench-Top Fabrication of an All-PDMS Microfluidic Electrochemical Cell Sensor Integrating Micro/Nanostructured Electrodes.
    Saem S; Zhu Y; Luu H; Moran-Mirabal J
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28362329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of 3D-Printed Moulds for Soft Lithography of Millifluidic Devices.
    Mohd Fuad N; Carve M; Kaslin J; Wlodkowic D
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A method for nanofluidic device prototyping using elastomeric collapse.
    Park SM; Huh YS; Craighead HG; Erickson D
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15549-54. PubMed ID: 19717418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications.
    Grist SM; Oyunerdene N; Flueckiger J; Kim J; Wong PC; Chrostowski L; Cheung KC
    Analyst; 2014 Nov; 139(22):5718-27. PubMed ID: 25230092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CMOS-Compatible Fabrication for Photonic Crystal-Based Nanofluidic Structure.
    Peng W; Chen Y; Ai W; Zhang D; Song H; Xiong H; Huang P
    Nanoscale Res Lett; 2017 Dec; 12(1):103. PubMed ID: 28209025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly elastic conductive polymeric MEMS.
    Ruhhammer J; Zens M; Goldschmidtboeing F; Seifert A; Woias P
    Sci Technol Adv Mater; 2015 Feb; 16(1):015003. PubMed ID: 27877753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules.
    Wang C; Nam SW; Cotte JM; Jahnes CV; Colgan EG; Bruce RL; Brink M; Lofaro MF; Patel JV; Gignac LM; Joseph EA; Rao SP; Stolovitzky G; Polonsky S; Lin Q
    Nat Commun; 2017 Jan; 8():14243. PubMed ID: 28112157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cost-effective microfabrication of sub-micron-depth channels by femto-laser anti-stiction texturing.
    Karimi S; Mehrdel P; Casals-Terré J; Farré-Llados J
    Biofabrication; 2020 Feb; 12(2):025021. PubMed ID: 31891916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment.
    Guo XC; Hu WW; Tan SH; Tsao CW
    Biomed Microdevices; 2018 Mar; 20(2):30. PubMed ID: 29564563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.
    Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM
    Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips.
    Kim J; An H; Seo Y; Jung Y; Lee JS; Choi N; Bong KW
    Biomicrofluidics; 2017 Mar; 11(2):024120. PubMed ID: 28469763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple approach for an optically transparent nanochannel device prototype.
    Liang F; Ju A; Qiao Y; Guo J; Feng H; Li J; Lu N; Tu J; Lu Z
    Lab Chip; 2016 Mar; 16(6):984-91. PubMed ID: 26891717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Practical fabrication of microfluidic platforms for live-cell microscopy.
    Lorusso D; Nikolov HN; Milner JS; Ochotny NM; Sims SM; Dixon SJ; Holdsworth DW
    Biomed Microdevices; 2016 Oct; 18(5):78. PubMed ID: 27523472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PDMS-PDMS Micro Channels Filled with Phase-Change Material for Chip Cooling.
    Liu Z; Qin S; Chen X; Chen D; Wang F
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.