These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31775638)
1. The impact of sample selection strategies on genetic diversity and representativeness in germplasm bank collections. Franco-Duran J; Crossa J; Chen J; Hearne SJ BMC Plant Biol; 2019 Nov; 19(1):520. PubMed ID: 31775638 [TBL] [Abstract][Full Text] [Related]
2. Extracting samples of high diversity from thematic collections of large gene banks using a genetic-distance based approach. Pessoa-Filho M; Rangel PH; Ferreira ME BMC Plant Biol; 2010 Jun; 10():127. PubMed ID: 20576152 [TBL] [Abstract][Full Text] [Related]
3. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. Emanuelli F; Lorenzi S; Grzeskowiak L; Catalano V; Stefanini M; Troggio M; Myles S; Martinez-Zapater JM; Zyprian E; Moreira FM; Grando MS BMC Plant Biol; 2013 Mar; 13():39. PubMed ID: 23497049 [TBL] [Abstract][Full Text] [Related]
4. Genetic characterization of a core set of a tropical maize race Tuxpeño for further use in maize improvement. Wen W; Franco J; Chavez-Tovar VH; Yan J; Taba S PLoS One; 2012; 7(3):e32626. PubMed ID: 22412898 [TBL] [Abstract][Full Text] [Related]
5. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. Lee HY; Ro NY; Jeong HJ; Kwon JK; Jo J; Ha Y; Jung A; Han JW; Venkatesh J; Kang BC BMC Genet; 2016 Nov; 17(1):142. PubMed ID: 27842492 [TBL] [Abstract][Full Text] [Related]
6. Effect of the scale of quantitative trait data on the representativeness of a cotton germplasm sub-core collection. Wang JC; Hu J; Guan YJ; Zhu YF J Zhejiang Univ Sci B; 2013 Feb; 14(2):162-70. PubMed ID: 23365014 [TBL] [Abstract][Full Text] [Related]
7. Selection of a core collection of Prunus sibirica L. germplasm by a stepwise clustering method using simple sequence repeat markers. Sun Y; Dong S; Liu Q; Chen J; Pan J; Zhang J PLoS One; 2021; 16(11):e0260097. PubMed ID: 34797843 [TBL] [Abstract][Full Text] [Related]
8. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement. Cuevas HE; Rosa-Valentin G; Hayes CM; Rooney WL; Hoffmann L BMC Genomics; 2017 Jan; 18(1):108. PubMed ID: 28125967 [TBL] [Abstract][Full Text] [Related]
9. Assessment of apple core collections constructed using phenotypic and genotypic data. Yun WH; Ban SH; Kim GH; Kim JH; Kwon SI; Choi C Genet Mol Res; 2015 Jun; 14(2):6453-64. PubMed ID: 26125850 [TBL] [Abstract][Full Text] [Related]
10. The Development of Quality Control Genotyping Approaches: A Case Study Using Elite Maize Lines. Chen J; Zavala C; Ortega N; Petroli C; Franco J; Burgueño J; Costich DE; Hearne SJ PLoS One; 2016; 11(6):e0157236. PubMed ID: 27280295 [TBL] [Abstract][Full Text] [Related]
11. Sampling strategy for a core collection of Peruvian quinoa germplasm. Ortiz R; Ruiz-Tapia EN; Mujica-Sanchez A Theor Appl Genet; 1998 Mar; 96(3-4):475-83. PubMed ID: 24710887 [TBL] [Abstract][Full Text] [Related]
12. Seed longevity of maize conserved under germplasm bank conditions for up to 60 years. Guzzon F; Gianella M; Velazquez Juarez JA; Sanchez Cano C; Costich DE Ann Bot; 2021 May; 127(6):775-785. PubMed ID: 33580665 [TBL] [Abstract][Full Text] [Related]
13. Genetic diversity and selection signatures in maize landraces compared across 50 years of in situ and ex situ conservation. McLean-Rodríguez FD; Costich DE; Camacho-Villa TC; Pè ME; Dell'Acqua M Heredity (Edinb); 2021 Jun; 126(6):913-928. PubMed ID: 33785893 [TBL] [Abstract][Full Text] [Related]
14. Methods of developing a core collection of annual Medicago species. Diwan N; McIntosh MS; Bauchan GR Theor Appl Genet; 1995 May; 90(6):755-61. PubMed ID: 24172915 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive phenotypic and genomic characterization of Ethiopian sorghum germplasm defines core collection and reveals rich genetic potential in adaptive traits. Girma G; Nida H; Tirfessa A; Lule D; Bejiga T; Seyoum A; Mekonen M; Nega A; Dessalegn K; Birhanu C; Bekele A; Gebreyohannes A; Ayana G; Tesso T; Ejeta G; Mengiste T Plant Genome; 2020 Nov; 13(3):e20055. PubMed ID: 33217211 [TBL] [Abstract][Full Text] [Related]
16. Genetic diversity, phylogenetic structure and development of core collections in Melilotus accessions from a Chinese gene bank. Zhang H; Bai R; Wu F; Guo W; Yan Z; Yan Q; Zhang Y; Ma J; Zhang J Sci Rep; 2019 Sep; 9(1):13017. PubMed ID: 31506537 [TBL] [Abstract][Full Text] [Related]
17. High-throughput genotyping for species identification and diversity assessment in germplasm collections. Mason AS; Zhang J; Tollenaere R; Vasquez Teuber P; Dalton-Morgan J; Hu L; Yan G; Edwards D; Redden R; Batley J Mol Ecol Resour; 2015 Sep; 15(5):1091-101. PubMed ID: 25641370 [TBL] [Abstract][Full Text] [Related]
18. Genetic diversity in the germplasm of tropical maize landraces determined using molecular markers. Molin D; Coelho CJ; Máximo DS; Ferreira FS; Gardingo JR; Matiello RR Genet Mol Res; 2013 Jan; 12(1):99-114. PubMed ID: 23359029 [TBL] [Abstract][Full Text] [Related]
19. Genetic diversity and accession structure in European Cynara cardunculus collections. Pagnotta MA; Fernández JA; Sonnante G; Egea-Gilabert C PLoS One; 2017; 12(6):e0178770. PubMed ID: 28570688 [TBL] [Abstract][Full Text] [Related]
20. The AVRDC - The World Vegetable Center mungbean (Vigna radiata) core and mini core collections. Schafleitner R; Nair RM; Rathore A; Wang YW; Lin CY; Chu SH; Lin PY; Chang JC; Ebert AW BMC Genomics; 2015 Apr; 16(1):344. PubMed ID: 25925106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]