BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31776019)

  • 1. Cell-mediated matrix stiffening accompanies capillary morphogenesis in ultra-soft amorphous hydrogels.
    Juliar BA; Beamish JA; Busch ME; Cleveland DS; Nimmagadda L; Putnam AJ
    Biomaterials; 2020 Feb; 230():119634. PubMed ID: 31776019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combination of matrix stiffness and degradability dictate microvascular network assembly and remodeling in cell-laden poly(ethylene glycol) hydrogels.
    Friend NE; McCoy AJ; Stegemann JP; Putnam AJ
    Biomaterials; 2023 Apr; 295():122050. PubMed ID: 36812843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary morphogenesis in PEG-collagen hydrogels.
    Singh RK; Seliktar D; Putnam AJ
    Biomaterials; 2013 Dec; 34(37):9331-40. PubMed ID: 24021759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels.
    Kesselman D; Kossover O; Mironi-Harpaz I; Seliktar D
    Acta Biomater; 2013 Aug; 9(8):7630-9. PubMed ID: 23624218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the relative roles of matrix metalloproteinase- and plasmin-mediated matrix degradation during capillary morphogenesis using engineered hydrogels.
    Beamish JA; Juliar BA; Cleveland DS; Busch ME; Nimmagadda L; Putnam AJ
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2507-2516. PubMed ID: 30784190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
    Arkenberg MR; Moore DM; Lin CC
    Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3.
    Schneider MC; Chu S; Randolph MA; Bryant SJ
    Acta Biomater; 2019 Jul; 93():97-110. PubMed ID: 30914256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Properties and Concentrations of Poly(ethylene glycol) in Hydrogels and Brushes Direct the Surface Transport of Staphylococcus aureus.
    Kolewe KW; Kalasin S; Shave M; Schiffman JD; Santore MM
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):320-330. PubMed ID: 30595023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of aortic valve interstitial cell-induced 3D remodeling of poly(ethylene glycol) hydrogel environments using an inverse finite element approach.
    Khang A; Steinman J; Tuscher R; Feng X; Sacks MS
    Acta Biomater; 2023 Apr; 160():123-133. PubMed ID: 36812955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Diffusion-Reaction Model for Predicting Enzyme-Mediated Dynamic Hydrogel Stiffening.
    Liu HY; Lin CC
    Gels; 2019 Mar; 5(1):. PubMed ID: 30871250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Modification of Human Decellularized Extracellular Matrix for Incorporation into Phototunable Hybrid-Hydrogel Models of Tissue Fibrosis.
    Hewawasam RS; Blomberg R; Šerbedžija P; Magin CM
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15071-15083. PubMed ID: 36917510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells.
    Liu HY; Greene T; Lin TY; Dawes CS; Korc M; Lin CC
    Acta Biomater; 2017 Jan; 48():258-269. PubMed ID: 27769941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG-peptide hydrogels.
    Arkenberg MR; Lin CC
    Biomater Sci; 2017 Oct; 5(11):2231-2240. PubMed ID: 28991963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis.
    Moon JJ; Hahn MS; Kim I; Nsiah BA; West JL
    Tissue Eng Part A; 2009 Mar; 15(3):579-85. PubMed ID: 18803481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Click Product Interactions Induce Dynamic Stiffening of Extracellular Matrix-Mimetic Hydrogels.
    Holt SE; Arroyo J; Poux E; Fricks A; Agurcia I; Heintschel M; Rakoski A; Alge DL
    Biomacromolecules; 2021 Jul; 22(7):3040-3048. PubMed ID: 34129338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic PEG-Peptide Hydrogels via Visible Light and FMN-Induced Tyrosine Dimerization.
    Liu HY; Nguyen HD; Lin CC
    Adv Healthc Mater; 2018 Nov; 7(22):e1800954. PubMed ID: 30369100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration.
    Raeber GP; Lutolf MP; Hubbell JA
    Biophys J; 2005 Aug; 89(2):1374-88. PubMed ID: 15923238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation.
    Dos Santos BP; Garbay B; Fenelon M; Rosselin M; Garanger E; Lecommandoux S; Oliveira H; Amédée J
    Acta Biomater; 2019 Nov; 99():154-167. PubMed ID: 31425892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.