These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 31776255)

  • 1. Energetic dependencies dictate folding mechanism in a complex protein.
    Liu K; Chen X; Kaiser CM
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25641-25648. PubMed ID: 31776255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ribosome destabilizes native and non-native structures in a nascent multidomain protein.
    Liu K; Rehfus JE; Mattson E; Kaiser CM
    Protein Sci; 2017 Jul; 26(7):1439-1451. PubMed ID: 28474852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ribosome Cooperates with a Chaperone to Guide Multi-domain Protein Folding.
    Liu K; Maciuba K; Kaiser CM
    Mol Cell; 2019 Apr; 74(2):310-319.e7. PubMed ID: 30852061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis runs counter to directional folding of a nascent protein domain.
    Chen X; Rajasekaran N; Liu K; Kaiser CM
    Nat Commun; 2020 Oct; 11(1):5096. PubMed ID: 33037221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cotranslational Folding of Proteins on the Ribosome.
    Liutkute M; Samatova E; Rodnina MV
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31936054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain.
    Helgstrand M; Mandava CS; Mulder FA; Liljas A; Sanyal S; Akke M
    J Mol Biol; 2007 Jan; 365(2):468-79. PubMed ID: 17070545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-equilibrium dynamics of a nascent polypeptide during translation suppress its misfolding.
    Alexander LM; Goldman DH; Wee LM; Bustamante C
    Nat Commun; 2019 Jun; 10(1):2709. PubMed ID: 31221966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule structural dynamics of EF-G--ribosome interaction during translocation.
    Wang Y; Qin H; Kudaravalli RD; Kirillov SV; Dempsey GT; Pan D; Cooperman BS; Goldman YE
    Biochemistry; 2007 Sep; 46(38):10767-75. PubMed ID: 17727272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small single-domain protein folds through the same pathway on and off the ribosome.
    Guinn EJ; Tian P; Shin M; Best RB; Marqusee S
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12206-12211. PubMed ID: 30409803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of domains 4 and 5 in elongation factor G functions on the ribosome.
    Savelsbergh A; Matassova NB; Rodnina MV; Wintermeyer W
    J Mol Biol; 2000 Jul; 300(4):951-61. PubMed ID: 10891280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The uncharacterized bacterial protein YejG has the same architecture as domain III of elongation factor G.
    Mohanty B; Hanson-Manful P; Finn TJ; Chambers CR; McKellar JLO; Macindoe I; Helder S; Setiyaputra S; Zhong Y; Mackay JP; Patrick WM
    Proteins; 2019 Aug; 87(8):699-705. PubMed ID: 30958578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome.
    Farías-Rico JA; Ruud Selin F; Myronidi I; Frühauf M; von Heijne G
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9280-E9287. PubMed ID: 30224455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding.
    Cabrita LD; Cassaignau AME; Launay HMM; Waudby CA; Wlodarski T; Camilloni C; Karyadi ME; Robertson AL; Wang X; Wentink AS; Goodsell L; Woolhead CA; Vendruscolo M; Dobson CM; Christodoulou J
    Nat Struct Mol Biol; 2016 Apr; 23(4):278-285. PubMed ID: 26926436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of translational factor EF-G with the bacterial ribosome before and after mRNA translocation.
    Wilson KS; Nechifor R
    J Mol Biol; 2004 Mar; 337(1):15-30. PubMed ID: 15001349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosomal protein L7/L12 is required for GTPase translation factors EF-G, RF3, and IF2 to bind in their GTP state to 70S ribosomes.
    Carlson MA; Haddad BG; Weis AJ; Blackwood CS; Shelton CD; Wuerth ME; Walter JD; Spiegel PC
    FEBS J; 2017 Jun; 284(11):1631-1643. PubMed ID: 28342293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular movements in EF-G, trapped at different stages in its GTP hydrolytic cycle, probed by FRET.
    Nguyen B; Ticu C; Wilson KS
    J Mol Biol; 2010 Apr; 397(5):1245-60. PubMed ID: 20219471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Folding Mediated by Trigger Factor and Hsp70: New Insights from Single-Molecule Approaches.
    Wruck F; Avellaneda MJ; Koers EJ; Minde DP; Mayer MP; Kramer G; Mashaghi A; Tans SJ
    J Mol Biol; 2018 Feb; 430(4):438-449. PubMed ID: 28911846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome.
    Ciryam P; Morimoto RI; Vendruscolo M; Dobson CM; O'Brien EP
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):E132-40. PubMed ID: 23256155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cotranslational folding of spectrin domains via partially structured states.
    Nilsson OB; Nickson AA; Hollins JJ; Wickles S; Steward A; Beckmann R; von Heijne G; Clarke J
    Nat Struct Mol Biol; 2017 Mar; 24(3):221-225. PubMed ID: 28112730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translation and folding of single proteins in real time.
    Wruck F; Katranidis A; Nierhaus KH; Büldt G; Hegner M
    Proc Natl Acad Sci U S A; 2017 May; 114(22):E4399-E4407. PubMed ID: 28507157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.