These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31776259)

  • 21. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits.
    Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH
    J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct phase relationships between suprachiasmatic molecular rhythms, cerebral cortex molecular rhythms, and behavioral rhythms in early runner (CAST/EiJ) and nocturnal (C57BL/6J) mice.
    Jiang P; Franklin KM; Duncan MJ; O'Hara BF; Wisor JP
    Sleep; 2012 Oct; 35(10):1385-94. PubMed ID: 23024437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.
    Ventskovska O; Porkka-Heiskanen T; Karpova NN
    J Sleep Res; 2015 Apr; 24(2):124-30. PubMed ID: 25223586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice.
    Hu WP; Li JD; Zhang C; Boehmer L; Siegel JM; Zhou QY
    Sleep; 2007 Mar; 30(3):247-56. PubMed ID: 17425220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A role for cryptochromes in sleep regulation.
    Wisor JP; O'Hara BF; Terao A; Selby CP; Kilduff TS; Sancar A; Edgar DM; Franken P
    BMC Neurosci; 2002 Dec; 3():20. PubMed ID: 12495442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic evidence for a role for protein kinase A in the maintenance of sleep and thalamocortical oscillations.
    Hellman K; Hernandez P; Park A; Abel T
    Sleep; 2010 Jan; 33(1):19-28. PubMed ID: 20120617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Vivo Imaging of the Central and Peripheral Effects of Sleep Deprivation and Suprachiasmatic Nuclei Lesion on PERIOD-2 Protein in Mice.
    Curie T; Maret S; Emmenegger Y; Franken P
    Sleep; 2015 Sep; 38(9):1381-94. PubMed ID: 25581923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circadian Rhythms and Sleep in
    Dubowy C; Sehgal A
    Genetics; 2017 Apr; 205(4):1373-1397. PubMed ID: 28360128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional magnetic resonance imaging-assessed brain responses during an executive task depend on interaction of sleep homeostasis, circadian phase, and PER3 genotype.
    Vandewalle G; Archer SN; Wuillaume C; Balteau E; Degueldre C; Luxen A; Maquet P; Dijk DJ
    J Neurosci; 2009 Jun; 29(25):7948-56. PubMed ID: 19553435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mistimed sleep disrupts circadian regulation of the human transcriptome.
    Archer SN; Laing EE; Möller-Levet CS; van der Veen DR; Bucca G; Lazar AS; Santhi N; Slak A; Kabiljo R; von Schantz M; Smith CP; Dijk DJ
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):E682-91. PubMed ID: 24449876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping the rhythmic chromatin landscape.
    Qu M; Qu H; Jia Z; Kay SA
    Nat Commun; 2021 Nov; 12(1):6350. PubMed ID: 34732735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A human sleep homeostasis phenotype in mice expressing a primate-specific PER3 variable-number tandem-repeat coding-region polymorphism.
    Hasan S; van der Veen DR; Winsky-Sommerer R; Hogben A; Laing EE; Koentgen F; Dijk DJ; Archer SN
    FASEB J; 2014 Jun; 28(6):2441-54. PubMed ID: 24577121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attenuated circadian rhythms in mice lacking the prokineticin 2 gene.
    Li JD; Hu WP; Boehmer L; Cheng MY; Lee AG; Jilek A; Siegel JM; Zhou QY
    J Neurosci; 2006 Nov; 26(45):11615-23. PubMed ID: 17093083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A role for clock genes in sleep homeostasis.
    Franken P
    Curr Opin Neurobiol; 2013 Oct; 23(5):864-72. PubMed ID: 23756047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis.
    Weizman EN; Tannenbaum M; Tarrant AM; Hakim O; Levy O
    PLoS Genet; 2019 Nov; 15(11):e1008397. PubMed ID: 31693674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress response genes protect against lethal effects of sleep deprivation in Drosophila.
    Shaw PJ; Tononi G; Greenspan RJ; Robinson DF
    Nature; 2002 May; 417(6886):287-91. PubMed ID: 12015603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhythms of the Genome: Circadian Dynamics from Chromatin Topology, Tissue-Specific Gene Expression, to Behavior.
    Yeung J; Naef F
    Trends Genet; 2018 Dec; 34(12):915-926. PubMed ID: 30309754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Homer proteins in the maintenance of sleep-wake states.
    Naidoo N; Ferber M; Galante RJ; McShane B; Hu JH; Zimmerman J; Maislin G; Cater J; Wyner A; Worley P; Pack AI
    PLoS One; 2012; 7(4):e35174. PubMed ID: 22532843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sleep deprivation-induced c-fos and junB expression in the rat brain: effects of duration and timing.
    Semba K; Pastorius J; Wilkinson M; Rusak B
    Behav Brain Res; 2001 Apr; 120(1):75-86. PubMed ID: 11173087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PERIOD3, circadian phenotypes, and sleep homeostasis.
    Dijk DJ; Archer SN
    Sleep Med Rev; 2010 Jun; 14(3):151-60. PubMed ID: 19716732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.