These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31776317)

  • 1. Comparison of the vertical bone defect healing abilities of carbonate apatite, β-tricalcium phosphate, hydroxyapatite and bovine-derived heterogeneous bone.
    Sato N; Handa K; Venkataiah VS; Hasegawa T; Njuguna MM; Yahata Y; Saito M
    Dent Mater J; 2020 Mar; 39(2):309-318. PubMed ID: 31776317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical and Histological Comparison of Hydroxyapatite, Carbonate Apatite, and β-Tricalcium Phosphate Bone Substitutes.
    Ishikawa K; Miyamoto Y; Tsuchiya A; Hayashi K; Tsuru K; Ohe G
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30332751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of periodontal wound healing/regeneration by recombinant human fibroblast growth factor-2 combined with β-tricalcium phosphate, carbonate apatite, or deproteinized bovine bone mineral in a canine one-wall intra-bony defect model.
    Shirakata Y; Setoguchi F; Sena K; Nakamura T; Imafuji T; Shinohara Y; Iwata M; Noguchi K
    J Clin Periodontol; 2022 Jun; 49(6):599-608. PubMed ID: 35322457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histological comparison of three apatitic bone substitutes with different carbonate contents in alveolar bone defects in a beagle mandible with simultaneous implant installation.
    Mano T; Akita K; Fukuda N; Kamada K; Kurio N; Ishikawa K; Miyamoto Y
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1450-1459. PubMed ID: 31622016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonate apatite versus β-tricalcium phosphate for rat vertical bone augmentation: A comparison of bioresorbable bone substitutes using polytetrafluoroethylene tubes.
    Yano M; Yasui K; Jo JI; Nishiura A; Hashimoto Y; Matsumoto N
    Dent Mater J; 2023 Nov; 42(6):851-859. PubMed ID: 37853644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral.
    Jafarian M; Eslaminejad MB; Khojasteh A; Mashhadi Abbas F; Dehghan MM; Hassanizadeh R; Houshmand B
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 May; 105(5):e14-24. PubMed ID: 18442730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a beta-tricalcium phosphate carrier into one-wall intrabony defects in dogs.
    Lee JS; Wikesjö UM; Jung UW; Choi SH; Pippig S; Siedler M; Kim CK
    J Clin Periodontol; 2010 Apr; 37(4):382-9. PubMed ID: 20447262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of a tunnel-structured β-tricalcium phosphate graft material on periodontal regeneration: a pilot study in a canine one-wall intrabony defect model.
    Matsuura T; Akizuki T; Hoshi S; Ikawa T; Kinoshita A; Sunaga M; Oda S; Kuboki Y; Izumi Y
    J Periodontal Res; 2015 Jun; 50(3):347-55. PubMed ID: 25040655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Experience with the clinical use of beta-tri-calcium phosphate (Cerasorb) as a bone replacement graft material in human periodontal osseous defects].
    Gera I; Döri F; Keglevich T; Anton S; Szilágyi E; Windisch P
    Fogorv Sz; 2002 Aug; 95(4):143-7. PubMed ID: 12236088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of three block bone substitutes for bone regeneration: long-term observation in the beagle dog.
    Sawada K; Nakahara K; Haga-Tsujimura M; Iizuka T; Fujioka-Kobayashi M; Igarashi K; Saulacic N
    Odontology; 2018 Oct; 106(4):398-407. PubMed ID: 29557992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the performances of low-crystalline carbonate apatite and Bio-Oss in sinus augmentation using three-dimensional image analysis.
    Nagata K; Fuchigami K; Kitami R; Okuhama Y; Wakamori K; Sumitomo H; Kim H; Okubo M; Kawana H
    Int J Implant Dent; 2021 Mar; 7(1):24. PubMed ID: 33754242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inflammatory-Driven Angiogenesis in Bone Augmentation with Bovine Hydroxyapatite, B-Tricalcium Phosphate, and Bioglasses: A Comparative Study.
    Anghelescu VM; Neculae I; Dincă O; Vlădan C; Socoliuc C; Cioplea M; Nichita L; Popp C; Zurac S; Bucur A
    J Immunol Res; 2018; 2018():9349207. PubMed ID: 30298138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation.
    Carrel JP; Wiskott A; Moussa M; Rieder P; Scherrer S; Durual S
    Clin Oral Implants Res; 2016 Jan; 27(1):55-62. PubMed ID: 25350936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of activated platelet-rich plasma (PRP) on tricalcium hydroxyapatite phosphate healing in experimental, partial defects of long bone shafts in animal models.
    Skwarcz S; Bryzek I; Gregosiewicz A; Warda E; Gawęda K; Tarczyńska M; Skwarcz J; Nadulski R; Starek A; Sanford J
    Pol J Vet Sci; 2019 Jun; 22(2):243-250. PubMed ID: 31269346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of filling materials in membrane--protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs.
    Buser D; Hoffmann B; Bernard JP; Lussi A; Mettler D; Schenk RK
    Clin Oral Implants Res; 1998 Jun; 9(3):137-50. PubMed ID: 10530128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compositional and histological comparison of carbonate apatite fabricated by dissolution-precipitation reaction and Bio-Oss
    Fujisawa K; Akita K; Fukuda N; Kamada K; Kudoh T; Ohe G; Mano T; Tsuru K; Ishikawa K; Miyamoto Y
    J Mater Sci Mater Med; 2018 Jul; 29(8):121. PubMed ID: 30032409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Clinical Evaluation of Biphasic Calcium Phosphate Alloplast with and without a Flowable Bioabsorbable Guided Tissue Regeneration Barrier in the Treatment of Mandibular Molar Class II Furcation Defects.
    Kini V; Nayak DG; Uppoor AS
    J Contemp Dent Pract; 2016 Feb; 17(2):143-8. PubMed ID: 27207003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of polyglactin mesh combined with resorbable calcium carbonate or replamineform hydroxyapatite on periodontal repair in dogs.
    Moon IS; Chai JK; Cho KS; Wikesjö UM; Kim CK
    J Clin Periodontol; 1996 Oct; 23(10):945-51. PubMed ID: 8915024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sintered carbonate apatites as bioresorbable bone substitutes.
    Doi Y; Shibutani T; Moriwaki Y; Kajimoto T; Iwayama Y
    J Biomed Mater Res; 1998 Mar; 39(4):603-10. PubMed ID: 9492222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of defect dimensions on periodontal wound healing/regeneration in intrabony defects following implantation of a bovine bone biomaterial and provisions for guided tissue regeneration: an experimental study in the dog.
    Stavropoulos A; Wikesjö UM
    J Clin Periodontol; 2010 Jun; 37(6):534-43. PubMed ID: 20507377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.