These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 31776377)
21. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy. So H; Pan D; Li L; Zhao J Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450 [TBL] [Abstract][Full Text] [Related]
22. GaP-ZnS pseudobinary alloy nanowires. Park K; Lee JA; Im HS; Jung CS; Kim HS; Park J; Lee CL Nano Lett; 2014 Oct; 14(10):5912-9. PubMed ID: 25234711 [TBL] [Abstract][Full Text] [Related]
23. Structural and optical properties of self-assembled AlN nanowires grown on SiO Gačević Ž; Grandal J; Guo Q; Kirste R; Varela M; Sitar Z; Sánchez García MA Nanotechnology; 2021 May; 32(19):195601. PubMed ID: 33535196 [TBL] [Abstract][Full Text] [Related]
24. Zinc blende and wurtzite crystal phase mixing and transition in indium phosphide nanowires. Ikejiri K; Kitauchi Y; Tomioka K; Motohisa J; Fukui T Nano Lett; 2011 Oct; 11(10):4314-8. PubMed ID: 21875079 [TBL] [Abstract][Full Text] [Related]
25. Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy. Koblmüller G; Hertenberger S; Vizbaras K; Bichler M; Bao F; Zhang JP; Abstreiter G Nanotechnology; 2010 Sep; 21(36):365602. PubMed ID: 20702932 [TBL] [Abstract][Full Text] [Related]
27. Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires. Zilli A; De Luca M; Tedeschi D; Fonseka HA; Miriametro A; Tan HH; Jagadish C; Capizzi M; Polimeni A ACS Nano; 2015 Apr; 9(4):4277-87. PubMed ID: 25801648 [TBL] [Abstract][Full Text] [Related]
28. Selective area growth of in-plane InAs nanowires and nanowire networks on Si substrates by molecular-beam epitaxy. Liu L; Wen L; He F; Zhuo R; Pan D; Zhao J Nanotechnology; 2023 Nov; 35(6):. PubMed ID: 37944189 [TBL] [Abstract][Full Text] [Related]
29. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties. Dionízio Moreira M; Venezuela P; Miwa RH Nanotechnology; 2010 Jul; 21(28):285204. PubMed ID: 20562482 [TBL] [Abstract][Full Text] [Related]
30. Concurrent Zinc-Blende and Wurtzite Film Formation by Selection of Confined Growth Planes. Staudinger P; Mauthe S; Moselund KE; Schmid H Nano Lett; 2018 Dec; 18(12):7856-7862. PubMed ID: 30427685 [TBL] [Abstract][Full Text] [Related]
31. Spatial Control of Multiphoton Electron Excitations in InAs Nanowires by Varying Crystal Phase and Light Polarization. Mårsell E; Boström E; Harth A; Losquin A; Guo C; Cheng YC; Lorek E; Lehmann S; Nylund G; Stankovski M; Arnold CL; Miranda M; Dick KA; Mauritsson J; Verdozzi C; L'Huillier A; Mikkelsen A Nano Lett; 2018 Feb; 18(2):907-915. PubMed ID: 29257889 [TBL] [Abstract][Full Text] [Related]
32. Polytypism in GaAs/GaNAs core-shell nanowires. Yukimune M; Fujiwara R; Mita T; Ishikawa F Nanotechnology; 2020 Dec; 31(50):505608. PubMed ID: 32937605 [TBL] [Abstract][Full Text] [Related]
33. Wurtzite phase control for self-assisted GaAs nanowires grown by molecular beam epitaxy. Dursap T; Vettori M; Botella C; Regreny P; Blanchard N; Gendry M; Chauvin N; Bugnet M; Danescu A; Penuelas J Nanotechnology; 2021 Apr; 32(15):155602. PubMed ID: 33429384 [TBL] [Abstract][Full Text] [Related]
34. Effect of a GaAsP shell on the optical properties of self-catalyzed GaAs nanowires grown on silicon. Couto OD; Sercombe D; Puebla J; Otubo L; Luxmoore IJ; Sich M; Elliott TJ; Chekhovich EA; Wilson LR; Skolnick MS; Liu HY; Tartakovskii AI Nano Lett; 2012 Oct; 12(10):5269-74. PubMed ID: 22989367 [TBL] [Abstract][Full Text] [Related]
35. Radial Growth Evolution of InGaAs/InP Multi-Quantum-Well Nanowires Grown by Selective-Area Metal Organic Vapor-Phase Epitaxy. Yang I; Zhang X; Zheng C; Gao Q; Li Z; Li L; Lockrey MN; Nguyen H; Caroff P; Etheridge J; Tan HH; Jagadish C; Wong-Leung J; Fu L ACS Nano; 2018 Oct; 12(10):10374-10382. PubMed ID: 30281281 [TBL] [Abstract][Full Text] [Related]
36. Growth of InAs/InP core-shell nanowires with various pure crystal structures. Gorji Ghalamestani S; Heurlin M; Wernersson LE; Lehmann S; Dick KA Nanotechnology; 2012 Jul; 23(28):285601. PubMed ID: 22717421 [TBL] [Abstract][Full Text] [Related]
37. InAs quantum dot in a needlelike tapered InP nanowire: a telecom band single photon source monolithically grown on silicon. Jaffal A; Redjem W; Regreny P; Nguyen HS; Cueff S; Letartre X; Patriarche G; Rousseau E; Cassabois G; Gendry M; Chauvin N Nanoscale; 2019 Nov; 11(45):21847-21855. PubMed ID: 31696191 [TBL] [Abstract][Full Text] [Related]
38. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals. Ghosh R; Giri PK; Imakita K; Fujii M Nanotechnology; 2014 Jan; 25(4):045703. PubMed ID: 24394591 [TBL] [Abstract][Full Text] [Related]
39. Synthesis and properties of ultra-long InP nanowires on glass. Dhaka V; Pale V; Khayrudinov V; Kakko JP; Haggren T; Jiang H; Kauppinen E; Lipsanen H Nanotechnology; 2016 Dec; 27(50):505606. PubMed ID: 27875330 [TBL] [Abstract][Full Text] [Related]
40. Enhanced luminescence properties of InAs nanowires via organic and inorganic sulfide passivation. Li B; Li S; Sun Y; Li S; Chen G; Wang X Nanotechnology; 2019 Nov; 30(44):445704. PubMed ID: 31365914 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]