These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 3177650)

  • 1. NMR studies of renal phosphate metabolites in vivo: effects of hydration and dehydration.
    Wolff SD; Eng C; Balaban RS
    Am J Physiol; 1988 Oct; 255(4 Pt 2):F581-9. PubMed ID: 3177650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute regulation of the predominant organic solutes of the rabbit renal inner medulla.
    Wolff SD; Stanton TS; James SL; Balaban RS
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F676-81. PubMed ID: 2508489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of major organic osmolytes in rat renal inner medulla in dehydration.
    Gullans SR; Blumenfeld JD; Balschi JA; Kaleta M; Brenner RM; Heilig CW; Hebert SC
    Am J Physiol; 1988 Oct; 255(4 Pt 2):F626-34. PubMed ID: 3177652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water content and NMR relaxation time gradients in the rabbit kidney.
    Kundel HL; Schlakman B; Joseph PM; Fishman JE; Summers R
    Invest Radiol; 1986 Jan; 21(1):12-7. PubMed ID: 3943954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental adaptations in cytosolic phosphate content and pH regulation in the sheep heart in vivo.
    Portman MA; Ning XH
    J Clin Invest; 1990 Dec; 86(6):1823-8. PubMed ID: 2254447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [In vivo 31P NMR studies on cerebral infarction using topical magnetic resonance (TMR)--time course of high energy phosphorus compounds content in ischemic and recirculated brain].
    Naruse S; Horikawa Y; Tanaka C; Hirakawa K; Nishikawa H; Koizuka I; Takada S; Watari H
    No To Shinkei; 1983 Jun; 35(6):603-9. PubMed ID: 6626382
    [No Abstract]   [Full Text] [Related]  

  • 7. The cryoprotective effects of dimethyl sulfoxide on human bone marrow as studied by 31P nuclear magnetic resonance spectroscopy.
    Brauer M; Penney HF; Janowska-Wieczorek A; Sykes BD
    Magn Reson Med; 1986 Apr; 3(2):203-16. PubMed ID: 3713486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of erythrocyte metabolism using 31P NMR-spectroscopy].
    Cernay P; Gajdos M; Zalibera L; Golier I
    Bratisl Lek Listy; 1986 Sep; 86(3):273-80. PubMed ID: 3756559
    [No Abstract]   [Full Text] [Related]  

  • 9. Assessment of high-energy phosphorus compounds in the rat kidney by in situ 31P nuclear magnetic resonance spectroscopy: effect of ischemia and furosemide.
    Takeda M; Katayama Y; Tsutsui T; Takahashi H; Saito K; Sato S; Yuasa T; Kuwabara T
    Urol Res; 1993 May; 21(3):193-7. PubMed ID: 8342254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical assessment of phospholipid and phosphoenergetic metabolites in regenerating rat liver measured by in vivo and in vitro 31P-NMR.
    Morikawa S; Inubushi T; Kitoh K; Kido C; Nozaki M
    Biochim Biophys Acta; 1992 Oct; 1117(3):251-7. PubMed ID: 1420275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal distribution and metabolism of [2H9]choline. A 2H NMR and MRI study.
    Eng J; Berkowitz BA; Balaban RS
    NMR Biomed; 1990 Aug; 3(4):173-7. PubMed ID: 2206849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role and regulation of glycerophosphorylcholine in rat renal papilla.
    Wirthensohn G; Beck FX; Guder WG
    Pflugers Arch; 1987 Aug; 409(4-5):411-5. PubMed ID: 3627958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gated in vivo examination of cardiac metabolites with 31P nuclear magnetic resonance.
    Kantor HL; Briggs RW; Metz KR; Balaban RS
    Am J Physiol; 1986 Jul; 251(1 Pt 2):H171-5. PubMed ID: 3728693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal corticomedullary metabolite gradients during graded arterial occlusion: a localized 31P magnetic resonance spectroscopy study.
    Parivar F; Narasimhan PT; Ross B
    J Am Soc Nephrol; 1991 Aug; 2(2):200-11. PubMed ID: 1954332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of organic and inorganic pollutants on intracellular phosphate compounds in blue mussels (Mytilus edulis).
    Aunaas T; Einarson S; Southon TE; Zachariassen KE
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 100(1-2):89-93. PubMed ID: 1677880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus-31 nuclear magnetic resonance studies of human red blood cells.
    Tehrani AY; Lam YF; Lin AK; Dosch SF; Ho C
    Blood Cells; 1982; 8(2):245-61. PubMed ID: 7159749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ischemia on intracellular sodium and phosphates in the in vivo rat liver.
    Xia ZF; Horton JW; Zhao PY; Babcock EE; Sherry AD; Malloy CR
    J Appl Physiol (1985); 1996 Sep; 81(3):1395-403. PubMed ID: 8889779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic time courses of cortical and medullary sodium signals measured by noninvasive (23) Na-MRI in rat kidney induced by furosemide.
    Liu H; Zhou D; Garcia ML; Kohler MG; Shen X; Williams DS; Klimas MT; Hargreaves RJ; Kaczorowski GJ
    J Magn Reson Imaging; 2015 Jun; 41(6):1622-8. PubMed ID: 25168165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of sodium influx and improved preservation of rat hearts during hypothermic ischemia by furosemide and bumetanide: a 23Na- and 31P-NMR study.
    Rubin Y; Navon G
    J Mol Cell Cardiol; 1993 Dec; 25(12):1403-11. PubMed ID: 8158660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of enhanced oxygen release from hemoglobin by RSR13 in an acute renal failure model.
    Burke TJ; Malhotra D; Shapiro JI
    Kidney Int; 2001 Oct; 60(4):1407-14. PubMed ID: 11576354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.