These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 317769)

  • 1. Elimination of cobalt from the frog brain introduced into the optic centres through the optic nerve.
    Lázár G
    Acta Biol Acad Sci Hung; 1979; 30(3):245-55. PubMed ID: 317769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light microscopic study of degenerating cobalt-filled optic axons in goldfish: role of microglia and radial glia in debris removal.
    Springer AD; Wilson BR
    J Comp Neurol; 1989 Apr; 282(1):119-32. PubMed ID: 2708589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Columnar organization of the optic tectum in the frog.
    Lázár G
    Acta Biol Hung; 1988; 39(2-3):211-6. PubMed ID: 3267201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?
    Stelzner DJ; Strauss JA
    J Comp Neurol; 1986 Mar; 245(1):83-106. PubMed ID: 3485663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microglial cells in the brain of Pleurodeles waltl (Urodela, Salamandridae) after wallerian degeneration in the primary visual system using Bandeiraea simplicifolia isolectin B4-cytochemistry.
    Naujoks-Manteuffel C; Niemann U
    Glia; 1994 Feb; 10(2):101-13. PubMed ID: 8168864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal projections in the goldfish: a study using cobaltous-lysine.
    Springer AD; Gaffney JS
    J Comp Neurol; 1981 Dec; 203(3):401-24. PubMed ID: 6274920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved cobalt labeling technique with complex compounds.
    Górcs T; Antal M; Oláh E; Székely G
    Acta Biol Acad Sci Hung; 1979; 30(1):79-86. PubMed ID: 95142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of cobalt-labeled neurons and nerve fibers by microglia from the frog's brain and spinal cord.
    Lazar G; Pal E
    Glia; 1996 Feb; 16(2):101-7. PubMed ID: 8929897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection.
    Singman EL; Scalia F
    J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method to selectively injure the optic nerve using argon-laser photocoagulation.
    Kuroda S; Yamada E; Kani K
    Jpn J Ophthalmol; 1996; 40(3):344-55. PubMed ID: 8988424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The aberrant retino-retinal projection during optic nerve regeneration in the frog. III. Effects of crushing both nerves.
    Bohn RC; Stelzner DJ
    J Comp Neurol; 1981 Mar; 196(4):633-43. PubMed ID: 6970758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further study of the outward displacement of retinal ganglion cells during optic nerve regeneration, with a note on the normal cells of Dogiel in the adult frog.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Nov; 301(1):80-92. PubMed ID: 2077052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinotopic and chronotopic organization of goldfish retinal ganglion cell axons throughout the optic nerve.
    Springer AD; Mednick AS
    J Comp Neurol; 1986 May; 247(2):221-32. PubMed ID: 3722440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histamine in retina, optic nerve, choroid and brain of albino and pigmented rabbits.
    Nowak JZ
    Pol J Pharmacol Pharm; 1985; 37(5):663-71. PubMed ID: 3832012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The projection of the retinal quadrants on the optic centres in the frog. A terminal degeneration study.
    Lázár G
    Acta Morphol Acad Sci Hung; 1971; 19(4):325-34. PubMed ID: 5317135
    [No Abstract]   [Full Text] [Related]  

  • 17. The superficial plexiform layer: a third retinal association area.
    Wieniawa-Narkiewicz E; Hughes A
    J Comp Neurol; 1992 Oct; 324(4):463-84. PubMed ID: 1430334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term persistence, after eye-removal, of unmyelinated fibres in the frog visual pathway.
    Lázár O
    Brain Res; 1980 Oct; 199(1):219-24. PubMed ID: 6967755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optokinetic horizontal head nystagmus in the frog after regeneration of transected retinal fibres.
    Lázár G; Tóth P
    Acta Biol Hung; 1983; 34(4):371-83. PubMed ID: 6237532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rental projections in the adult Xenopus laevis: a study with cobalt filling technique.
    Tóth P; Lázár G; Görcs T
    Acta Morphol Acad Sci Hung; 1980; 28(4):365-74. PubMed ID: 7008512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.