These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31776908)

  • 1. Biochemical and molecular characterization of arsenic response from Azospirillum brasilense Cd, a bacterial strain used as plant inoculant.
    Vezza ME; Olmos Nicotra MF; Agostini E; Talano MA
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):2287-2300. PubMed ID: 31776908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants.
    Armendariz AL; Talano MA; Wevar Oller AL; Medina MI; Agostini E
    J Environ Sci (China); 2015 Jul; 33():203-10. PubMed ID: 26141894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promising co-inoculation strategies to reduce arsenic toxicity in soybean.
    Vezza ME; Pramparo RDP; Wevar Oller AL; Agostini E; Talano MA
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88066-88077. PubMed ID: 35821321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense.
    Spaepen S; Bossuyt S; Engelen K; Marchal K; Vanderleyden J
    New Phytol; 2014 Feb; 201(3):850-861. PubMed ID: 24219779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR.
    Stets MI; Alqueres SM; Souza EM; Pedrosa Fde O; Schmid M; Hartmann A; Cruz LM
    Appl Environ Microbiol; 2015 Oct; 81(19):6700-9. PubMed ID: 26187960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress.
    Armendariz AL; Talano MA; Olmos Nicotra MF; Escudero L; Breser ML; Porporatto C; Agostini E
    Plant Physiol Biochem; 2019 May; 138():26-35. PubMed ID: 30831360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3.
    Guerrero-Molina MF; Lovaisa NC; Salazar SM; Martínez-Zamora MG; Díaz-Ricci JC; Pedraza RO
    Plant Biol (Stuttg); 2015 May; 17(3):766-73. PubMed ID: 25280241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nature of the interaction Azospirillum-Arabidopsis determine the molecular and morphological changes in root and plant growth promotion.
    Méndez-Gómez M; Barrera-Ortiz S; Castro-Mercado E; López-Bucio J; García-Pineda E
    Protoplasma; 2021 Jan; 258(1):179-189. PubMed ID: 33009649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting redox metabolism of the maize-Azospirillum brasilense interaction exposed to arsenic-affected groundwater.
    Peralta JM; Bianucci E; Romero-Puertas MC; Furlan A; Castro S; Travaglia C
    Physiol Plant; 2021 Nov; 173(3):1189-1206. PubMed ID: 34331344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.
    Steenhoudt O; Vanderleyden J
    FEMS Microbiol Rev; 2000 Oct; 24(4):487-506. PubMed ID: 10978548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth-promoting bacterium Azospirillum brasilense.
    Elías JM; Guerrero-Molina MF; Martínez-Zamora MG; Díaz-Ricci JC; Pedraza RO
    Plant Biol (Stuttg); 2018 May; 20(3):490-496. PubMed ID: 29350442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Azospirillum brasilense Az39 restricts cadmium entrance into wheat plants and mitigates cadmium stress.
    Vazquez A; Zawoznik M; Benavides MP; Groppa MD
    Plant Sci; 2021 Nov; 312():111056. PubMed ID: 34620450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.
    Fibach-Paldi S; Burdman S; Okon Y
    FEMS Microbiol Lett; 2012 Jan; 326(2):99-108. PubMed ID: 22092983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ProClaT, a new bioinformatics tool for in silico protein reclassification: case study of DraB, a protein coded from the draTGB operon in Azospirillum brasilense.
    Rubel ET; Raittz RT; Coimbra NA; Gehlen MA; Pedrosa FO
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):455. PubMed ID: 28105917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction.
    Méndez-Gómez M; Castro-Mercado E; Alexandre G; García-Pineda E
    Protoplasma; 2016 Mar; 253(2):477-86. PubMed ID: 25952083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inoculation with Bacillus subtilis and Azospirillum brasilense Produces Abscisic Acid That Reduces Irt1-Mediated Cadmium Uptake of Roots.
    Xu Q; Pan W; Zhang R; Lu Q; Xue W; Wu C; Song B; Du S
    J Agric Food Chem; 2018 May; 66(20):5229-5236. PubMed ID: 29738246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeled Azospirillum brasilense wild type and excretion-ammonium strains in association with barley roots.
    Santos ARS; Etto RM; Furmam RW; Freitas DL; Santos KFDN; Souza EM; Pedrosa FO; Ayub RA; Steffens MBR; Galvão CW
    Plant Physiol Biochem; 2017 Sep; 118():422-426. PubMed ID: 28711791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early plant growth and biochemical responses induced by Azospirillum brasilense Sp245 lipopolysaccharides in wheat (Triticum aestivum L.) seedlings are attenuated by procyanidin B2.
    Vallejo-Ochoa J; López-Marmolejo M; Hernández-Esquivel AA; Méndez-Gómez M; Suárez-Soria LN; Castro-Mercado E; García-Pineda E
    Protoplasma; 2018 Mar; 255(2):685-694. PubMed ID: 29110138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2,4-Dichlorophenoxyacetic acid affects the attachment of Azospirillum brasilense Cd to maize roots.
    Jofré E; Mori G; Castro S; Fabra A; Rivarola V; Balegno H
    Toxicology; 1996 Jan; 107(1):9-15. PubMed ID: 8597034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense.
    Martínez-Morales LJ; Soto-Urzúa L; Baca BE; Sánchez-Ahédo JA
    FEMS Microbiol Lett; 2003 Nov; 228(2):167-73. PubMed ID: 14638420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.