These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Elucidating interplay of speed and accuracy in biological error correction. Banerjee K; Kolomeisky AB; Igoshin OA Proc Natl Acad Sci U S A; 2017 May; 114(20):5183-5188. PubMed ID: 28465435 [TBL] [Abstract][Full Text] [Related]
7. Computer simulation of Feynman's ratchet and pawl system. Zheng J; Zheng X; Yam C; Chen G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061104. PubMed ID: 20866375 [TBL] [Abstract][Full Text] [Related]
8. Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of Allosteric Communication. Guarnera E; Berezovsky IN PLoS Comput Biol; 2016 Mar; 12(3):e1004678. PubMed ID: 26939022 [TBL] [Abstract][Full Text] [Related]
9. The energy cost and optimal design of networks for biological discrimination. Yu Q; Kolomeisky AB; Igoshin OA J R Soc Interface; 2022 Mar; 19(188):20210883. PubMed ID: 35259959 [TBL] [Abstract][Full Text] [Related]
10. The energy relay: a proofreading scheme based on dynamic cooperativity and lacking all characteristic symptoms of kinetic proofreading in DNA replication and protein synthesis. Hopfield JJ Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5248-52. PubMed ID: 6933556 [TBL] [Abstract][Full Text] [Related]
11. How EF-Tu can contribute to efficient proofreading of aa-tRNA by the ribosome. Noel JK; Whitford PC Nat Commun; 2016 Oct; 7():13314. PubMed ID: 27796304 [TBL] [Abstract][Full Text] [Related]
12. Revisiting Feynman's ratchet with thermoelectric transport theory. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012113. PubMed ID: 25122257 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic and kinetic basis of interfacial activation: resolution of binding and allosteric effects on pancreatic phospholipase A2 at zwitterionic interfaces. Berg OG; Rogers J; Yu BZ; Yao J; Romsted LS; Jain MK Biochemistry; 1997 Nov; 36(47):14512-30. PubMed ID: 9398170 [TBL] [Abstract][Full Text] [Related]
14. Trade-Offs between Error, Speed, Noise, and Energy Dissipation in Biological Processes with Proofreading. Mallory JD; Kolomeisky AB; Igoshin OA J Phys Chem B; 2019 Jun; 123(22):4718-4725. PubMed ID: 31074999 [TBL] [Abstract][Full Text] [Related]
15. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Hopfield JJ Proc Natl Acad Sci U S A; 1974 Oct; 71(10):4135-9. PubMed ID: 4530290 [TBL] [Abstract][Full Text] [Related]
16. Trade-Offs between Speed, Accuracy, and Dissipation in tRNA Yu Q; Mallory JD; Kolomeisky AB; Ling J; Igoshin OA J Phys Chem Lett; 2020 May; 11(10):4001-4007. PubMed ID: 32354218 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamic constraints on kinetic proofreading in biosynthetic pathways. Ehrenberg M; Blomberg C Biophys J; 1980 Sep; 31(3):333-58. PubMed ID: 7260292 [TBL] [Abstract][Full Text] [Related]
18. Energy cost of proofreading to increase fidelity of transfer ribonucleic acid aminoacylation. Savageau MA; Freter RR Biochemistry; 1979 Aug; 18(16):3486-93. PubMed ID: 258151 [TBL] [Abstract][Full Text] [Related]