BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31777679)

  • 1. Augmentation of Doppler Radar Data Using Generative Adversarial Network for Human Motion Analysis.
    Alnujaim I; Kim Y
    Healthc Inform Res; 2019 Oct; 25(4):344-349. PubMed ID: 31777679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network.
    Rahnemoonfar M; Johnson J; Paden J
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deep-Learning Method for Radar Micro-Doppler Spectrogram Restoration.
    He Y; Li X; Li R; Wang J; Jing X
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32899348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition.
    Gao F; Ma F; Wang J; Sun J; Yang E; Zhou H
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generative adversarial network based adaptive data augmentation for handwritten Arabic text recognition.
    Eltay M; Zidouri A; Ahmad I; Elarian Y
    PeerJ Comput Sci; 2022; 8():e861. PubMed ID: 35174276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images.
    Motamed S; Rogalla P; Khalvati F
    Inform Med Unlocked; 2021; 27():100779. PubMed ID: 34841040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cotton Fusarium wilt diagnosis based on generative adversarial networks in small samples.
    Zhang Z; Ma L; Wei C; Yang M; Qin S; Lv X; Zhang Z
    Front Plant Sci; 2023; 14():1290774. PubMed ID: 38162306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Human Micro-Doppler Signature Based on Layer-Reduced Deep Convolutional Generative Adversarial Network.
    Ostovan M; Samadi S; Kazemi A
    Comput Intell Neurosci; 2022; 2022():7365544. PubMed ID: 35463251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of Space Objects by Using Deep Learning with Micro-Doppler Signature Images.
    Jung K; Lee JI; Kim N; Oh S; Seo DW
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analysis of Audio Processing Techniques on Doppler Radar Signature of Human Walking Motion Using CNN Models.
    Ha MK; Phan TL; Nguyen DHH; Quan NH; Ha-Phan NQ; Ching CTS; Hieu NV
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Data Augmentation Strategy for Electron Energy Loss Spectroscopy: Generative Adversarial Networks.
    Del-Pozo-Bueno D; Kepaptsoglou D; Ramasse QM; Peiró F; Estradé S
    Microsc Microanal; 2024 Apr; 30(2):278-293. PubMed ID: 38684097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generative adversarial networks in electrocardiogram synthesis: Recent developments and challenges.
    Berger L; Haberbusch M; Moscato F
    Artif Intell Med; 2023 Sep; 143():102632. PubMed ID: 37673589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Speech Emotion Recognition With Adversarial Data Augmentation Network.
    Yi L; Mak MW
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):172-184. PubMed ID: 33035171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radar Sensing for Activity Classification in Elderly People Exploiting Micro-Doppler Signatures Using Machine Learning.
    Taylor W; Dashtipour K; Shah SA; Hussain A; Abbasi QH; Imran MA
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting Images for Video Recognition: Heterogeneous Feature Augmentation via Symmetric Adversarial Learning.
    Yu F; Wu X; Chen J; Duan L
    IEEE Trans Image Process; 2019 Nov; 28(11):5308-5321. PubMed ID: 31144637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification.
    Montero A; Bonet-Carne E; Burgos-Artizzu XP
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs).
    He C; Huang S; Cheng R; Tan KC; Jin Y
    IEEE Trans Cybern; 2021 Jun; 51(6):3129-3142. PubMed ID: 32365041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.