These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 31777933)

  • 1. Evolution-guided engineering of small-molecule biosensors.
    Snoek T; Chaberski EK; Ambri F; Kol S; Bjørn SP; Pang B; Barajas JF; Welner DH; Jensen MK; Keasling JD
    Nucleic Acids Res; 2020 Jan; 48(1):e3. PubMed ID: 31777933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast.
    Ambri F; Snoek T; Skjoedt ML; Jensen MK; Keasling JD
    Methods Mol Biol; 2018; 1671():269-290. PubMed ID: 29170965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution Scanning of Optimal Biosensor Reporter Promoters in Yeast.
    Ambri F; D'Ambrosio V; Di Blasi R; Maury J; Jacobsen SAB; McCloskey D; Jensen MK; Keasling JD
    ACS Synth Biol; 2020 Feb; 9(2):218-226. PubMed ID: 31935067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of
    Wang G; Øzmerih S; Guerreiro R; Meireles AC; Carolas A; Milne N; Jensen MK; Ferreira BS; Borodina I
    ACS Synth Biol; 2020 Mar; 9(3):634-646. PubMed ID: 32058699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Versatile Transcription Factor Biosensor System Responsive to Multiple Aromatic and Indole Inducers.
    Nasr MA; Timmins LR; Martin VJJ; Kwan DH
    ACS Synth Biol; 2022 Apr; 11(4):1692-1698. PubMed ID: 35316041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolving Small-Molecule Biosensors with Improved Performance and Reprogrammed Ligand Preference Using OrthoRep.
    Javanpour AA; Liu CC
    ACS Synth Biol; 2021 Oct; 10(10):2705-2714. PubMed ID: 34597502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering transcription factor-based biosensors for repressive regulation through transcriptional deactivation design in Saccharomyces cerevisiae.
    Qiu C; Chen X; Rexida R; Shen Y; Qi Q; Bao X; Hou J
    Microb Cell Fact; 2020 Jul; 19(1):146. PubMed ID: 32690010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast.
    Skjoedt ML; Snoek T; Kildegaard KR; Arsovska D; Eichenberger M; Goedecke TJ; Rajkumar AS; Zhang J; Kristensen M; Lehka BJ; Siedler S; Borodina I; Jensen MK; Keasling JD
    Nat Chem Biol; 2016 Nov; 12(11):951-958. PubMed ID: 27642864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering an NADPH/NADP
    Zhang J; Sonnenschein N; Pihl TP; Pedersen KR; Jensen MK; Keasling JD
    ACS Synth Biol; 2016 Dec; 5(12):1546-1556. PubMed ID: 27419466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Orthogonal and pH-Tunable Sensor-Selector for Muconic Acid Biosynthesis in Yeast.
    Snoek T; Romero-Suarez D; Zhang J; Ambri F; Skjoedt ML; Sudarsan S; Jensen MK; Keasling JD
    ACS Synth Biol; 2018 Apr; 7(4):995-1003. PubMed ID: 29613773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Biosensors from Dimeric Ligand-Binding Domains.
    Jester BW; Tinberg CE; Rich MS; Baker D; Fields S
    ACS Synth Biol; 2018 Oct; 7(10):2457-2467. PubMed ID: 30204430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae.
    Leavitt JM; Wagner JM; Tu CC; Tong A; Liu Y; Alper HS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28296355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator.
    Ezezika OC; Haddad S; Clark TJ; Neidle EL; Momany C
    J Mol Biol; 2007 Mar; 367(3):616-29. PubMed ID: 17291527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and structural characterization of an IclR family transcription factor for the development of dicarboxylic acid biosensors.
    Pham C; Nasr MA; Skarina T; Di Leo R; Kwan DH; Martin VJJ; Stogios PJ; Mahadevan R; Savchenko A
    FEBS J; 2024 Aug; 291(15):3481-3498. PubMed ID: 38696354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
    Chen XF; Xia XX; Lee SY; Qian ZG
    Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization of the effector-binding domains of BenM and CatM, LysR-type transcriptional regulators from Acinetobacter sp. ADP1.
    Clark T; Haddad S; Neidle E; Momany C
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):105-8. PubMed ID: 14684899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rosetta comparative modeling for library design: Engineering alternative inducer specificity in a transcription factor.
    Jha RK; Chakraborti S; Kern TL; Fox DT; Strauss CE
    Proteins; 2015 Jul; 83(7):1327-40. PubMed ID: 25974100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergent directed evolution of a TetR-type repressor towards aromatic molecules.
    Nasr MA; Martin VJJ; Kwan DH
    Nucleic Acids Res; 2023 Aug; 51(14):7675-7690. PubMed ID: 37377432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
    De Paepe B; Maertens J; Vanholme B; De Mey M
    ACS Synth Biol; 2018 May; 7(5):1303-1314. PubMed ID: 29688705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligify: Automated Genome Mining for Ligand-Inducible Transcription Factors.
    d'Oelsnitz S; Love JD; Ellington AD; Ross D
    ACS Synth Biol; 2024 Aug; 13(8):2577-2586. PubMed ID: 39029917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.