These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31778710)

  • 1. Dispersal asymmetry in a two-patch system with source-sink populations.
    Wu H; Wang Y; Li Y; DeAngelis DL
    Theor Popul Biol; 2020 Feb; 131():54-65. PubMed ID: 31778710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population abundance in predator-prey systems with predator's dispersal between two patches.
    Huang R; Wang Y; Wu H
    Theor Popul Biol; 2020 Oct; 135():1-8. PubMed ID: 32659231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does colonization asymmetry matter in metapopulations?
    Vuilleumier S; Possingham HP
    Proc Biol Sci; 2006 Jul; 273(1594):1637-42. PubMed ID: 16769635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anthropogenic landscape change promotes asymmetric dispersal and limits regional patch occupancy in a spatially structured bird population.
    Pavlacky DC; Possingham HP; Lowe AJ; Prentis PJ; Green DJ; Goldizen AW
    J Anim Ecol; 2012 Sep; 81(5):940-52. PubMed ID: 22489927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population abundance of two-patch competitive systems with asymmetric dispersal.
    Wang Y; Wu H; He Y; Wang Z; Hu K
    J Math Biol; 2020 Jul; 81(1):315-341. PubMed ID: 32572557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Prey's Diffusion on Predator-Prey Systems with Two Patches.
    Xiao S; Wang Y; Wang S
    Bull Math Biol; 2021 Mar; 83(5):45. PubMed ID: 33745081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Competitive Systems with Diffusion Between Source-Sink Patches.
    Wu H; Wang Y
    Bull Math Biol; 2021 Mar; 83(5):49. PubMed ID: 33765224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population abundance of a two-patch chemostat system with asymmetric diffusion.
    Tan C; Wang Y; Wu H
    J Theor Biol; 2019 Aug; 474():1-13. PubMed ID: 31054917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic population growth in spatially heterogeneous environments.
    Evans SN; Ralph PL; Schreiber SJ; Sen A
    J Math Biol; 2013 Feb; 66(3):423-76. PubMed ID: 22427143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of dispersal and dynamics among habitat patches varying in quality.
    Donahue MJ; Holyoak M; Feng C
    Am Nat; 2003 Sep; 162(3):302-17. PubMed ID: 12970839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pollination-mutualisms in a two-patch system with dispersal.
    Wang Y
    J Theor Biol; 2019 Sep; 476():51-61. PubMed ID: 31175851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total biomass of a single population in two-patch environments.
    Gao D; Lou Y
    Theor Popul Biol; 2022 Aug; 146():1-14. PubMed ID: 35654290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersal effects on a discrete two-patch model for plant-insect interactions.
    Kang Y; Armbruster D
    J Theor Biol; 2011 Jan; 268(1):84-97. PubMed ID: 20937287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of density-dependent dispersal in source-sink dynamics.
    Amarasekare P
    J Theor Biol; 2004 Jan; 226(2):159-68. PubMed ID: 14643185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the effects of spatial heterogeneity and temporal variation in extinction probability on mosquito populations.
    Alcalay Y; Tsurim I; Ovadia O
    Ecol Appl; 2017 Dec; 27(8):2342-2358. PubMed ID: 28851019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially heterogeneous populations with mixed negative and positive local density dependence.
    Knipl D; Röst G
    Theor Popul Biol; 2016 Jun; 109():6-15. PubMed ID: 26801607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dispersal in two-patch prey-predator system with positive density dependence growth of preys.
    Sasmal SK; Ghosh D
    Biosystems; 2017 Jan; 151():8-20. PubMed ID: 27884620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metapopulation persistence in random fragmented landscapes.
    Grilli J; Barabás G; Allesina S
    PLoS Comput Biol; 2015 May; 11(5):e1004251. PubMed ID: 25993004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the impact of dispersal asymmetry on metapopulation persistence.
    Kleinhans D; Jonsson PR
    J Theor Biol; 2011 Dec; 290():37-45. PubMed ID: 21924275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A necessary condition for dispersal driven growth of populations with discrete patch dynamics.
    Guiver C; Packman D; Townley S
    J Theor Biol; 2017 Jul; 424():11-25. PubMed ID: 28427818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.