BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31778740)

  • 1. Enhanced cellular uptake and nuclear accumulation of drug-peptide nanomedicines prepared by enzyme-instructed self-assembly.
    Liang C; Yan X; Zhang R; Xu T; Zheng D; Tan Z; Chen Y; Gao Z; Wang L; Li X; Yang Z
    J Control Release; 2020 Jan; 317():109-117. PubMed ID: 31778740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear delivery of dual anti-cancer drugs by molecular self-assembly.
    Wu J; Ding W; Han G; You W; Gao W; Shen H; Tang J; Tang Q; Wang X
    Biomater Sci; 2021 Jan; 9(1):116-123. PubMed ID: 33325919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly.
    Xu T; Liang C; Zheng D; Yan X; Chen Y; Chen Y; Li X; Shi Y; Wang L; Yang Z
    Nanoscale; 2020 Jul; 12(28):15275-15282. PubMed ID: 32644059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-assisted peptide folding, assembly and anti-cancer properties.
    Liang C; Zheng D; Shi F; Xu T; Yang C; Liu J; Wang L; Yang Z
    Nanoscale; 2017 Aug; 9(33):11987-11993. PubMed ID: 28792044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-Instructed Supramolecular Self-Assembly with Anticancer Activity.
    Yao Q; Huang Z; Liu D; Chen J; Gao Y
    Adv Mater; 2019 Nov; 31(45):e1804814. PubMed ID: 30444545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An NRP1/MDM2-Targeted D-Peptide Supramolecular Nanomedicine for High-Efficacy and Low-Toxic Liver Cancer Therapy.
    Zhou Y; Chen Y; Tan Y; Hu R; Niu MM
    Adv Healthc Mater; 2021 May; 10(9):e2002197. PubMed ID: 33690977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting.
    Ren L; Feng W; Shao J; Ma J; Xu M; Zhu BZ; Zheng N; Liu S
    Theranostics; 2020; 10(14):6384-6398. PubMed ID: 32483459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-Instructed Self-Assembly (EISA) and Hydrogelation of Peptides.
    Gao J; Zhan J; Yang Z
    Adv Mater; 2020 Jan; 32(3):e1805798. PubMed ID: 31018025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines.
    Islam R; Gao S; Islam W; Šubr V; Zhou JR; Yokomizo K; Etrych T; Maeda H; Fang J
    Acta Biomater; 2021 May; 126():372-383. PubMed ID: 33774199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembled Peptide Drug Delivery Systems.
    Yang J; An HW; Wang H
    ACS Appl Bio Mater; 2021 Jan; 4(1):24-46. PubMed ID: 35014275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preorganization Increases the Self-Assembling Ability and Antitumor Efficacy of Peptide Nanomedicine.
    Liang C; Wang Z; Xu T; Chen Y; Zheng D; Zhang L; Zhang W; Yang Z; Shi Y; Gao J
    ACS Appl Mater Interfaces; 2020 May; 12(20):22492-22498. PubMed ID: 32352747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular Nanofibers Formed by Enzyme-Instructed Self-Assembly for SKBR-3 Cell Selective Inhibition.
    Wang S; Ma Y; Ma C; Liu K; Huo Z; Shang Y
    Chem Asian J; 2022 Jul; 17(14):e202200301. PubMed ID: 35510693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular "Trojan Horse" for Nuclear Delivery of Dual Anticancer Drugs.
    Cai Y; Shen H; Zhan J; Lin M; Dai L; Ren C; Shi Y; Liu J; Gao J; Yang Z
    J Am Chem Soc; 2017 Mar; 139(8):2876-2879. PubMed ID: 28191948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular nanofibers increase the efficacy of 10-hydroxycamptothecin by enhancing nuclear accumulation and depleting cellular ATP.
    Guo Q; Liu Y; Wang Z; Zhang J; Mu G; Wang W; Liu J
    Acta Biomater; 2021 Mar; 122():343-353. PubMed ID: 33444804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembled Nanomedicines for Anticancer and Antibacterial Applications.
    Zhou L; Qiu T; Lv F; Liu L; Ying J; Wang S
    Adv Healthc Mater; 2018 Oct; 7(20):e1800670. PubMed ID: 30080319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines.
    Chen J; Zhao Y; Yao Q; Gao Y
    Biomed Mater; 2021 Feb; 16(2):022011. PubMed ID: 33630754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lanthanide-peptide-derived bacterium-like nanotheranostic with high tumor-targeting, -imaging and -killing properties.
    He W; Yan J; Wang L; Lei B; Hou P; Lu W; Ma PX
    Biomaterials; 2019 Jun; 206():13-24. PubMed ID: 30921731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor-Targeted Nanomedicine for Immunotherapy.
    Cabral H; Kinoh H; Kataoka K
    Acc Chem Res; 2020 Dec; 53(12):2765-2776. PubMed ID: 33161717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-instructed self-assembly of a novel histone deacetylase inhibitor with enhanced selectivity and anticancer efficiency.
    Gao Y; Zhang C; Chang J; Yang C; Liu J; Fan S; Ren C
    Biomater Sci; 2019 Mar; 7(4):1477-1485. PubMed ID: 30672520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.