These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
871 related articles for article (PubMed ID: 31778756)
21. Synergistic and antibiofilm properties of ocellatin peptides against multidrug-resistant Pseudomonas aeruginosa. Bessa LJ; Eaton P; Dematei A; Plácido A; Vale N; Gomes P; Delerue-Matos C; Sa Leite JR; Gameiro P Future Microbiol; 2018 Feb; 13():151-163. PubMed ID: 29308671 [TBL] [Abstract][Full Text] [Related]
22. Positional scanning library applied to the human eosinophil cationic protein/RNase3 N-terminus reveals novel and potent anti-biofilm peptides. Pulido D; Prats-Ejarque G; Villalba C; Albacar M; Moussaoui M; Andreu D; Volkmer R; Torrent M; Boix E Eur J Med Chem; 2018 May; 152():590-599. PubMed ID: 29763807 [TBL] [Abstract][Full Text] [Related]
23. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78. Monteiro C; Fernandes M; Pinheiro M; Maia S; Seabra CL; Ferreira-da-Silva F; Costa F; Reis S; Gomes P; Martins MC Biochim Biophys Acta; 2015 May; 1848(5):1139-46. PubMed ID: 25680229 [TBL] [Abstract][Full Text] [Related]
24. Lipoic acid modified antimicrobial peptide with enhanced antimicrobial properties. Zhou W; Du Y; Li X; Yao C Bioorg Med Chem; 2020 Oct; 28(19):115682. PubMed ID: 32912428 [TBL] [Abstract][Full Text] [Related]
25. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Almaaytah A; Mohammed GK; Abualhaijaa A; Al-Balas Q Drug Des Devel Ther; 2017; 11():3159-3170. PubMed ID: 29138537 [TBL] [Abstract][Full Text] [Related]
26. Antimicrobial peptides as potential tool to fight bacterial biofilm. Dawgul M; Maciejewska M; Jaskiewicz M; Karafova A; Kamysz W Acta Pol Pharm; 2014; 71(1):39-47. PubMed ID: 24779193 [TBL] [Abstract][Full Text] [Related]
27. Van Moll L; De Smet J; Paas A; Tegtmeier D; Vilcinskas A; Cos P; Van Campenhout L Microbiol Spectr; 2022 Feb; 10(1):e0166421. PubMed ID: 34985302 [TBL] [Abstract][Full Text] [Related]
28. Membrane-active amino acid-coupled polyetheramine derivatives with high selectivity and broad-spectrum antibacterial activity. Li H; Li Y; Wang Y; Liu L; Dong H; Satoh T Acta Biomater; 2022 Apr; 142():136-148. PubMed ID: 35158080 [TBL] [Abstract][Full Text] [Related]
29. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms. Jorge P; Grzywacz D; Kamysz W; Lourenço A; Pereira MO PLoS One; 2017; 12(3):e0174654. PubMed ID: 28355248 [TBL] [Abstract][Full Text] [Related]
30. In vitro and in vivo anti-biofilm activity of pyran derivative against Staphylococcus aureus and Pseudomonas aeruginosa. Su S; Yin P; Li J; Chen G; Wang Y; Qu D; Li Z; Xue X; Luo X; Li M J Infect Public Health; 2020 May; 13(5):791-799. PubMed ID: 31813834 [TBL] [Abstract][Full Text] [Related]
31. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
32. Anti-biofilm and sporicidal activity of peptides based on wheat puroindoline and barley hordoindoline proteins. Shagaghi N; Alfred RL; Clayton AH; Palombo EA; Bhave M J Pept Sci; 2016 Jul; 22(7):492-500. PubMed ID: 27238815 [TBL] [Abstract][Full Text] [Related]
33. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Dosler S; Karaaslan E Peptides; 2014 Dec; 62():32-7. PubMed ID: 25285879 [TBL] [Abstract][Full Text] [Related]
34. Antimicrobial and anti-inflammatory activities of chemokine CXCL14-derived antimicrobial peptide and its analogs. Rajasekaran G; Dinesh Kumar S; Nam J; Jeon D; Kim Y; Lee CW; Park IS; Shin SY Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):256-267. PubMed ID: 29959905 [TBL] [Abstract][Full Text] [Related]
35. Highly selective end-tagged antimicrobial peptides derived from PRELP. Malmsten M; Kasetty G; Pasupuleti M; Alenfall J; Schmidtchen A PLoS One; 2011 Jan; 6(1):e16400. PubMed ID: 21298015 [TBL] [Abstract][Full Text] [Related]
36. Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide. Zhu X; Ma Z; Wang J; Chou S; Shan A PLoS One; 2014; 9(12):e114605. PubMed ID: 25494332 [TBL] [Abstract][Full Text] [Related]
37. De novo synthetic short antimicrobial peptides against cariogenic bacteria. Wang Y; Fan Y; Zhou Z; Tu H; Ren Q; Wang X; Ding L; Zhou X; Zhang L Arch Oral Biol; 2017 Aug; 80():41-50. PubMed ID: 28366785 [TBL] [Abstract][Full Text] [Related]
38. Optimization of oncocin for antibacterial activity using a SPOT synthesis approach: extending the pathogen spectrum to Staphylococcus aureus. Knappe D; Ruden S; Langanke S; Tikkoo T; Ritzer J; Mikut R; Martin LL; Hoffmann R; Hilpert K Amino Acids; 2016 Jan; 48(1):269-80. PubMed ID: 26334348 [TBL] [Abstract][Full Text] [Related]
39. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Haney EF; Trimble MJ; Cheng JT; Vallé Q; Hancock REW Biomolecules; 2018 May; 8(2):. PubMed ID: 29883434 [TBL] [Abstract][Full Text] [Related]
40. Anti-microbial, anti-biofilm activities and cell selectivity of the NRC-16 peptide derived from witch flounder, Glyptocephalus cynoglossus. Gopal R; Lee JH; Kim YG; Kim MS; Seo CH; Park Y Mar Drugs; 2013 May; 11(6):1836-52. PubMed ID: 23760014 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]