BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 31779216)

  • 1. Identification of Flower-Specific Promoters through Comparative Transcriptome Analysis in
    Li Y; Dong C; Hu M; Bai Z; Tong C; Zuo R; Liu Y; Cheng X; Cheng M; Huang J; Liu S
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779216
    [No Abstract]   [Full Text] [Related]  

  • 2. Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2.
    Fu W; Chen D; Pan Q; Li F; Zhao Z; Ge X; Li Z
    Plant Biotechnol J; 2018 Feb; 16(2):367-380. PubMed ID: 28640973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner.
    Byzova M; Verduyn C; De Brouwer D; De Block M
    Planta; 2004 Jan; 218(3):379-87. PubMed ID: 14534787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis and expression of a floral organ-specific polygalacturonase gene isolated from rapeseed (Brassica napus L.).
    Wan L; Xia X; Hong D; Yang G
    Mol Biol Rep; 2010 Dec; 37(8):3851-62. PubMed ID: 20213507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection.
    Liu F; Li X; Wang M; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J
    Plant Biotechnol J; 2018 Apr; 16(4):911-925. PubMed ID: 28929638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum.
    Thangstad OP; Gilde B; Chadchawan S; Seem M; Husebye H; Bradley D; Bones AM
    Plant Mol Biol; 2004 Mar; 54(4):597-611. PubMed ID: 15316292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum.
    Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL
    Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing.
    Lin L; Fan J; Li P; Liu D; Ren S; Lin K; Fang Y; Lin C; Wang Y; Wu J
    J Exp Bot; 2022 Nov; 73(19):6663-6677. PubMed ID: 35927220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus.
    Joshi RK; Megha S; Basu U; Rahman MH; Kav NN
    PLoS One; 2016; 11(7):e0158784. PubMed ID: 27388760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level.
    Cao JY; Xu YP; Zhao L; Li SS; Cai XZ
    Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An oilseed rape WRKY-type transcription factor regulates ROS accumulation and leaf senescence in Nicotiana benthamiana and Arabidopsis through modulating transcription of RbohD and RbohF.
    Yang L; Ye C; Zhao Y; Cheng X; Wang Y; Jiang YQ; Yang B
    Planta; 2018 Jun; 247(6):1323-1338. PubMed ID: 29511814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The promoter of the carotenoid cleavage dioxygenase 4a-5 gene of Chrysanthemum morifolium (CmCCD4a-5) drives petal-specific transcription of a conjugated gene in the developing flower.
    Imai A; Takahashi S; Nakayama K; Satoh H
    J Plant Physiol; 2013 Sep; 170(14):1295-9. PubMed ID: 23643306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of prior candidate genes for Sclerotinia local resistance in Brassica napus using Arabidopsis cDNA microarray and Brassica-Arabidopsis comparative mapping.
    Liu R; Zhao J; Xiao Y; Meng J
    Sci China C Life Sci; 2005 Oct; 48(5):460-70. PubMed ID: 16315597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus.
    Jia L; Wang J; Wang R; Duan M; Qiao C; Chen X; Ma G; Zhou X; Zhu M; Jing F; Zhang S; Qu C; Li J
    Planta; 2021 Jan; 253(1):8. PubMed ID: 33387047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and evolutionary study of MLO gene family in the regulation of Sclerotinia stem rot resistance in Brassica napus L.
    Liu J; Wu Y; Zhang X; Gill RA; Hu M; Bai Z; Zhao C; Zhang Y; Liu Y; Hu Q; Cheng X; Huang J; Liu L; Yan S; Liu S
    Biotechnol Biofuels Bioprod; 2023 May; 16(1):86. PubMed ID: 37217949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum.
    Bergmann T; Menkhaus J; Ye W; Schemmel M; Hasler M; Rietz S; Leckband G; Cai D
    Theor Appl Genet; 2023 Mar; 136(4):86. PubMed ID: 36966424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape.
    Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S
    Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape (Brassica napus) and Arabidopsis thaliana: evidence for roles in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth.
    Sander L; Child R; Ulvskov P; Albrechtsen M; Borkhardt B
    Plant Mol Biol; 2001 Jul; 46(4):469-79. PubMed ID: 11485203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.