These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31779352)

  • 1. A recurrence network-based convolutional neural network for fatigue driving detection from EEG.
    Gao ZK; Li YL; Yang YX; Ma C
    Chaos; 2019 Nov; 29(11):113126. PubMed ID: 31779352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-Based Spatio-Temporal Convolutional Neural Network for Driver Fatigue Evaluation.
    Gao Z; Wang X; Yang Y; Mu C; Cai Q; Dang W; Zuo S
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2755-2763. PubMed ID: 30640634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real driving environment EEG-based detection of driving fatigue using the wavelet scattering network.
    Wang F; Chen D; Yao W; Fu R
    J Neurosci Methods; 2023 Dec; 400():109983. PubMed ID: 37838152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG driving fatigue detection based on log-Mel spectrogram and convolutional recurrent neural networks.
    Gao D; Tang X; Wan M; Huang G; Zhang Y
    Front Neurosci; 2023; 17():1136609. PubMed ID: 36968502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convolutional neural network based on recurrence plot for EEG recognition.
    Hao C; Wang R; Li M; Ma C; Cai Q; Gao Z
    Chaos; 2021 Dec; 31(12):123120. PubMed ID: 34972327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex Limited Penetrable Horizontal Visibility Graph from EEG Signals for Driver Fatigue Detection.
    Cai Q; Gao ZK; Yang YX; Dang WD; Grebogi C
    Int J Neural Syst; 2019 Jun; 29(5):1850057. PubMed ID: 30776986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG.
    Cui J; Lan Z; Liu Y; Li R; Li F; Sourina O; Müller-Wittig W
    Methods; 2022 Jun; 202():173-184. PubMed ID: 33901644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miner Fatigue Detection from Electroencephalogram-Based Relative Power Spectral Topography Using Convolutional Neural Network.
    Xu L; Li J; Feng D
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using long short term memory and convolutional neural networks for driver drowsiness detection.
    Quddus A; Shahidi Zandi A; Prest L; Comeau FJE
    Accid Anal Prev; 2021 Jun; 156():106107. PubMed ID: 33848710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males.
    Chen J; Wang H; Wang Q; Hua C
    Neuropsychologia; 2019 Jun; 129():200-211. PubMed ID: 30995455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Attentive Channel-Connectivity Capsule Network for EEG-Based Driving Fatigue Detection.
    Chen C; Ji Z; Sun Y; Bezerianos A; Thakor N; Wang H
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3152-3162. PubMed ID: 37494165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cross-scenario and cross-subject domain adaptation method for driving fatigue detection.
    Luo Y; Liu W; Li H; Lu Y; Lu BL
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38838664
    [No Abstract]   [Full Text] [Related]  

  • 14. A Product Fuzzy Convolutional Network for Detecting Driving Fatigue.
    Du G; Long S; Li C; Wang Z; Liu PX
    IEEE Trans Cybern; 2023 Jul; 53(7):4175-4188. PubMed ID: 35171785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. End-to-end fatigue driving EEG signal detection model based on improved temporal-graph convolution network.
    Jia H; Xiao Z; Ji P
    Comput Biol Med; 2023 Jan; 152():106431. PubMed ID: 36543007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG Classification of Motor Imagery Using a Novel Deep Learning Framework.
    Dai M; Zheng D; Na R; Wang S; Zhang S
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30699946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial directed coherence based graph convolutional neural networks for driving fatigue detection.
    Zhang W; Wang F; Wu S; Xu Z; Ping J; Jiang Y
    Rev Sci Instrum; 2020 Jul; 91(7):074713. PubMed ID: 32752838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-Based Driving Fatigue Detection Using a Two-Level Learning Hierarchy Radial Basis Function.
    Ren Z; Li R; Chen B; Zhang H; Ma Y; Wang C; Lin Y; Zhang Y
    Front Neurorobot; 2021; 15():618408. PubMed ID: 33643018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driver Fatigue Detection Based on Convolutional Neural Networks Using EM-CNN.
    Zhao Z; Zhou N; Zhang L; Yan H; Xu Y; Zhang Z
    Comput Intell Neurosci; 2020; 2020():7251280. PubMed ID: 33293943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driving Stress Detection Using Multimodal Convolutional Neural Networks with Nonlinear Representation of Short-Term Physiological Signals.
    Lee J; Lee H; Shin M
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33808147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.