These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31779359)

  • 1. Cross-predicting the dynamics of an optically injected single-mode semiconductor laser using reservoir computing.
    Cunillera A; Soriano MC; Fischer I
    Chaos; 2019 Nov; 29(11):113113. PubMed ID: 31779359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the dynamical behaviors for chaotic semiconductor lasers by reservoir computing.
    Li XZ; Sheng B; Zhang M
    Opt Lett; 2022 Jun; 47(11):2822-2825. PubMed ID: 35648939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning algorithms for predicting the amplitude of chaotic laser pulses.
    Amil P; Soriano MC; Masoller C
    Chaos; 2019 Nov; 29(11):113111. PubMed ID: 31779344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On prediction of chaotic dynamics in semiconductor lasers by reservoir computing.
    Li XZ; Yang B; Zhao S; Gu Y; Zhao M
    Opt Express; 2023 Nov; 31(24):40592-40603. PubMed ID: 38041355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting phase and sensing phase coherence in chaotic systems with machine learning.
    Zhang C; Jiang J; Qu SX; Lai YC
    Chaos; 2020 Aug; 30(8):083114. PubMed ID: 32872815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography.
    Antonik P; Gulina M; Pauwels J; Massar S
    Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time series reconstructing using calibrated reservoir computing.
    Chen Y; Qian Y; Cui X
    Sci Rep; 2022 Sep; 12(1):16318. PubMed ID: 36175460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model.
    Pathak J; Wikner A; Fussell R; Chandra S; Hunt BR; Girvan M; Ott E
    Chaos; 2018 Apr; 28(4):041101. PubMed ID: 31906641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing polynomial libraries for reservoir computing in nonlinear dynamical system forecasting.
    Ren HH; Bai YL; Fan MH; Ding L; Yue XX; Yu QH
    Phys Rev E; 2024 Feb; 109(2-1):024227. PubMed ID: 38491629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reservoir computing based on an external-cavity semiconductor laser with optical feedback modulation.
    Kanno K; Haya AA; Uchida A
    Opt Express; 2022 Sep; 30(19):34218-34238. PubMed ID: 36242440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reservoir computing as digital twins for nonlinear dynamical systems.
    Kong LW; Weng Y; Glaz B; Haile M; Lai YC
    Chaos; 2023 Mar; 33(3):033111. PubMed ID: 37003826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights on correlation dimension from dynamics mapping of three experimental nonlinear laser systems.
    McMahon CJ; Toomey JP; Kane DM
    PLoS One; 2017; 12(8):e0181559. PubMed ID: 28837602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic approach for assessing the predictability of chaotic time series using reservoir computing.
    Khovanov IA
    Chaos; 2021 Aug; 31(8):083105. PubMed ID: 34470249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics.
    Nguimdo RM; Verschaffelt G; Danckaert J; Van der Sande G
    Opt Express; 2014 Apr; 22(7):8672-86. PubMed ID: 24718237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing bifurcation diagrams of chaotic circuits with reservoir computing.
    Luo H; Du Y; Fan H; Wang X; Guo J; Wang X
    Phys Rev E; 2024 Feb; 109(2-1):024210. PubMed ID: 38491568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reservoir observers: Model-free inference of unmeasured variables in chaotic systems.
    Lu Z; Pathak J; Hunt B; Girvan M; Brockett R; Ott E
    Chaos; 2017 Apr; 27(4):041102. PubMed ID: 28456169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaotic mode-competition dynamics in a multimode semiconductor laser with optical feedback and injection.
    Iwami R; Kanno K; Uchida A
    Opt Express; 2023 Mar; 31(7):11274-11291. PubMed ID: 37155767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive learning of multi-channel isochronal chaotic synchronization by utilizing parallel optical reservoir computers based on three laterally coupled semiconductor lasers with delay-time feedback.
    Zhong D; Yang H; Xi J; Zeng N; Xu Z; Deng F
    Opt Express; 2021 Feb; 29(4):5279-5294. PubMed ID: 33726067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting amplitude death with machine learning.
    Xiao R; Kong LW; Sun ZK; Lai YC
    Phys Rev E; 2021 Jul; 104(1-1):014205. PubMed ID: 34412238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forecasting the chaotic dynamics of external cavity semiconductor lasers.
    Kai C; Li P; Yang Y; Wang B; Alan Shore K; Wang Y
    Opt Lett; 2023 Mar; 48(5):1236-1239. PubMed ID: 36857263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.