These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31779370)

  • 21. Effects of the information-driven awareness on epidemic spreading on multiplex networks.
    Wang J; Xiong W; Wang R; Cai S; Wu D; Wang W; Chen X
    Chaos; 2022 Jul; 32(7):073123. PubMed ID: 35907734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of epidemic spreading process on multiplex networks via active immunization.
    Li Z; Zhu P; Zhao D; Deng Z; Wang Z
    Chaos; 2019 Jul; 29(7):073111. PubMed ID: 31370413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of official information and rumor on resource-epidemic coevolution dynamics.
    Huo L; Zhao R; Zhao L
    J King Saud Univ Comput Inf Sci; 2022 Nov; 34(10):9207-9215. PubMed ID: 37521178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The impact of nodes of information dissemination on epidemic spreading in dynamic multiplex networks.
    Feng M; Li X; Li Y; Li Q
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppressing epidemics with a limited amount of immunization units.
    Schneider CM; Mihaljev T; Havlin S; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061911. PubMed ID: 22304120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Traffic-Driven Epidemic Spreading in Networks: Considering the Transition of Infection From Being Mild to Severe.
    Wu Y; Pu C; Zhang G; Pardalos PM
    IEEE Trans Cybern; 2023 Jul; 53(7):4619-4629. PubMed ID: 34910659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epidemic spreading on preferred degree adaptive networks.
    Jolad S; Liu W; Schmittmann B; Zia RK
    PLoS One; 2012; 7(11):e48686. PubMed ID: 23189133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal allocation of resources for suppressing epidemic spreading on networks.
    Chen H; Li G; Zhang H; Hou Z
    Phys Rev E; 2017 Jul; 96(1-1):012321. PubMed ID: 29347176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting epidemic threshold in complex networks by graph neural network.
    Wang W; Li C; Qu B; Li X
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38865095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Asymmetrically interacting spreading dynamics on complex layered networks.
    Wang W; Tang M; Yang H; Younghae Do ; Lai YC; Lee G
    Sci Rep; 2014 May; 4():5097. PubMed ID: 24872257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cooperative epidemics on multiplex networks.
    Azimi-Tafreshi N
    Phys Rev E; 2016 Apr; 93():042303. PubMed ID: 27176308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.
    Onaga T; Gleeson JP; Masuda N
    Phys Rev Lett; 2017 Sep; 119(10):108301. PubMed ID: 28949155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying epidemic threshold by temporal profile of outbreaks on networks.
    Xu Y; Tang M; Liu Y; Zou Y; Liu Z
    Chaos; 2019 Oct; 29(10):103141. PubMed ID: 31675823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The SAITS epidemic spreading model and its combinational optimal suppression control.
    Ding W; Ding L; Kong Z; Liu F
    Math Biosci Eng; 2023 Jan; 20(2):3342-3354. PubMed ID: 36899584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppressing traffic-driven epidemic spreading by edge-removal strategies.
    Yang HX; Wu ZX; Wang BH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):064801. PubMed ID: 23848813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effective approach to epidemic containment using link equations in complex networks.
    Matamalas JT; Arenas A; Gómez S
    Sci Adv; 2018 Dec; 4(12):eaau4212. PubMed ID: 30525105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppressing epidemics on networks by exploiting observer nodes.
    Takaguchi T; Hasegawa T; Yoshida Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012807. PubMed ID: 25122342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resource control of epidemic spreading through a multilayer network.
    Jiang J; Zhou T
    Sci Rep; 2018 Jan; 8(1):1629. PubMed ID: 29374273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-bond percolation model of epidemic spreading with vaccination in complex networks.
    Li S; Zhao X; Zhang R
    J Math Biol; 2022 Oct; 85(5):49. PubMed ID: 36222889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Role of Node Heterogeneity in the Coupled Spreading of Epidemics and Awareness.
    Guo Q; Lei Y; Xia C; Guo L; Jiang X; Zheng Z
    PLoS One; 2016; 11(8):e0161037. PubMed ID: 27517715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.