These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 31779484)

  • 1. In Vivo AAV-CRISPR/Cas9-Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia.
    Zhao H; Li Y; He L; Pu W; Yu W; Li Y; Wu YT; Xu C; Wei Y; Ding Q; Song BL; Huang H; Zhou B
    Circulation; 2020 Jan; 141(1):67-79. PubMed ID: 31779484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic Editing of Ldlr With Adeno-Associated Viral-CRISPR Is an Efficient Tool for Atherosclerosis Research.
    Jarrett KE; Lee C; De Giorgi M; Hurley A; Gillard BK; Doerfler AM; Li A; Pownall HJ; Bao G; Lagor WR
    Arterioscler Thromb Vasc Biol; 2018 Sep; 38(9):1997-2006. PubMed ID: 30026278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-density lipoprotein receptor-deficient hepatocytes differentiated from induced pluripotent stem cells allow familial hypercholesterolemia modeling, CRISPR/Cas-mediated genetic correction, and productive hepatitis C virus infection.
    Caron J; Pène V; Tolosa L; Villaret M; Luce E; Fourrier A; Heslan JM; Saheb S; Bruckert E; Gómez-Lechón MJ; Nguyen TH; Rosenberg AR; Weber A; Dubart-Kupperschmitt A
    Stem Cell Res Ther; 2019 Jul; 10(1):221. PubMed ID: 31358055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LDL Receptor Gene-ablated Hamsters: A Rodent Model of Familial Hypercholesterolemia With Dominant Inheritance and Diet-induced Coronary Atherosclerosis.
    Guo X; Gao M; Wang Y; Lin X; Yang L; Cong N; An X; Wang F; Qu K; Yu L; Wang Y; Wang J; Zhu H; Xian X; Liu G
    EBioMedicine; 2018 Jan; 27():214-224. PubMed ID: 29289533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exosome-based
    Li Z; Zhao P; Zhang Y; Wang J; Wang C; Liu Y; Yang G; Yuan L
    Theranostics; 2021; 11(6):2953-2965. PubMed ID: 33456582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Gene Editing in Lipid and Atherosclerosis Research.
    De Giorgi M; Jarrett KE; de Aguiar Vallim TQ; Lagor WR
    Methods Mol Biol; 2022; 2419():673-713. PubMed ID: 35237996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia.
    Somanathan S; Jacobs F; Wang Q; Hanlon AL; Wilson JM; Rader DJ
    Circ Res; 2014 Aug; 115(6):591-9. PubMed ID: 25023731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with deficiency of low-density lipoprotein receptor (LDLR) on exon 7.
    Lu R; Yuan T; Wang Y; Zhang T; Yuan Y; Wu D; Zhou M; He Z; Lu Y; Chen Y; Fan J; Liang J; Cheng Y
    EBioMedicine; 2018 Oct; 36():29-38. PubMed ID: 30243490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recapitulating familial hypercholesterolemia in a mouse model by knock-in patient-specific LDLR mutation.
    Liu J; Yang F; Shang L; Cai S; Wu Y; Liu Y; Zhang L; Fei C; Wang M; Gu F
    FASEB J; 2024 Mar; 38(6):e23573. PubMed ID: 38526846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease.
    Jarrett KE; Lee CM; Yeh YH; Hsu RH; Gupta R; Zhang M; Rodriguez PJ; Lee CS; Gillard BK; Bissig KD; Pownall HJ; Martin JF; Bao G; Lagor WR
    Sci Rep; 2017 Mar; 7():44624. PubMed ID: 28300165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperlipidemia induces typical atherosclerosis development in Ldlr and Apoe deficient rats.
    Zhao Y; Yang Y; Xing R; Cui X; Xiao Y; Xie L; You P; Wang T; Zeng L; Peng W; Li D; Chen H; Liu M
    Atherosclerosis; 2018 Apr; 271():26-35. PubMed ID: 29459263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR Systems Suitable for Single AAV Vector Delivery.
    Stevanovic M; Piotter E; McClements ME; MacLaren RE
    Curr Gene Ther; 2022; 22(1):1-14. PubMed ID: 34620062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curative Ex Vivo Hepatocyte-Directed Gene Editing in a Mouse Model of Hereditary Tyrosinemia Type 1.
    VanLith C; Guthman R; Nicolas CT; Allen K; Du Z; Joo DJ; Nyberg SL; Lillegard JB; Hickey RD
    Hum Gene Ther; 2018 Nov; 29(11):1315-1326. PubMed ID: 29764210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of hyperlipidemic rabbit models using multiple sgRNAs targeted CRISPR/Cas9 gene editing system.
    Yuan T; Zhong Y; Wang Y; Zhang T; Lu R; Zhou M; Lu Y; Yan K; Chen Y; Hu Z; Liang J; Fan J; Cheng Y
    Lipids Health Dis; 2019 Mar; 18(1):69. PubMed ID: 30885208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD.
    Srivastava RAK
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New opportunities in the management and treatment of refractory hypercholesterolemia using in vivo CRISPR-mediated genome/base editing.
    Srivastava RAK
    Nutr Metab Cardiovasc Dis; 2023 Dec; 33(12):2317-2325. PubMed ID: 37805309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy and Safety of an Investigational Single-Course CRISPR Base-Editing Therapy Targeting
    Lee RG; Mazzola AM; Braun MC; Platt C; Vafai SB; Kathiresan S; Rohde E; Bellinger AM; Khera AV
    Circulation; 2023 Jan; 147(3):242-253. PubMed ID: 36314243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo.
    Hung SS; Chrysostomou V; Li F; Lim JK; Wang JH; Powell JE; Tu L; Daniszewski M; Lo C; Wong RC; Crowston JG; Pébay A; King AE; Bui BV; Liu GS; Hewitt AW
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3470-6. PubMed ID: 27367513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency.
    Song CQ; Wang D; Jiang T; O'Connor K; Tang Q; Cai L; Li X; Weng Z; Yin H; Gao G; Mueller C; Flotte TR; Xue W
    Hum Gene Ther; 2018 Aug; 29(8):853-860. PubMed ID: 29597895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.