BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 31779673)

  • 1. Osteogenic commitment of Wharton's jelly mesenchymal stromal cells: mechanisms and implications for bioprocess development and clinical application.
    Cabrera-Pérez R; Monguió-Tortajada M; Gámez-Valero A; Rojas-Márquez R; Borràs FE; Roura S; Vives J
    Stem Cell Res Ther; 2019 Nov; 10(1):356. PubMed ID: 31779673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Wharton's jelly-derived mesenchymal stromal cells promote bone formation in immunodeficient mice when administered into a bone microenvironment.
    Cabrera-Pérez R; Ràfols-Mitjans A; Roig-Molina Á; Beltramone S; Vives J; Batlle-Morera L
    J Transl Med; 2023 Nov; 21(1):802. PubMed ID: 37950242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering.
    Reppel L; Schiavi J; Charif N; Leger L; Yu H; Pinzano A; Henrionnet C; Stoltz JF; Bensoussan D; Huselstein C
    Stem Cell Res Ther; 2015 Dec; 6():260. PubMed ID: 26718750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells.
    Donders R; Bogie JFJ; Ravanidis S; Gervois P; Vanheusden M; Marée R; Schrynemackers M; Smeets HJM; Pinxteren J; Gijbels K; Walbers S; Mays RW; Deans R; Van Den Bosch L; Stinissen P; Lambrichts I; Gyselaers W; Hellings N
    Stem Cells Dev; 2018 Jan; 27(2):65-84. PubMed ID: 29267140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxic culture conditions for Mesenchymal Stromal/Stem Cells from Wharton's jelly: a critical parameter to consider in a therapeutic context.
    Reppel L; Margossian T; Yaghi L; Moreau P; Mercier N; Leger L; Hupont S; Stoltz JF; Bensoussan D; Huselstein C
    Curr Stem Cell Res Ther; 2014; 9(4):306-18. PubMed ID: 24524785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflammation and Toll-like receptor ligation differentially affect the osteogenic potential of human mesenchymal stromal cells depending on their tissue origin.
    Raicevic G; Najar M; Pieters K; De Bruyn C; Meuleman N; Bron D; Toungouz M; Lagneaux L
    Tissue Eng Part A; 2012 Jul; 18(13-14):1410-8. PubMed ID: 22429150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord.
    Hsieh JY; Fu YS; Chang SJ; Tsuang YH; Wang HW
    Stem Cells Dev; 2010 Dec; 19(12):1895-910. PubMed ID: 20367285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal plasticity of human Wharton's jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells.
    Datta I; Mishra S; Mohanty L; Pulikkot S; Joshi PG
    Cytotherapy; 2011 Sep; 13(8):918-32. PubMed ID: 21696238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Proteomic Analysis of the Mesenchymal Stem Cells Secretome from Adipose, Bone Marrow, Placenta and Wharton's Jelly.
    Shin S; Lee J; Kwon Y; Park KS; Jeong JH; Choi SJ; Bang SI; Chang JW; Lee C
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Comparison of Wharton's Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34(+) Transplants.
    van der Garde M; van Pel M; Millán Rivero JE; de Graaf-Dijkstra A; Slot MC; Kleinveld Y; Watt SM; Roelofs H; Zwaginga JJ
    Stem Cells Dev; 2015 Nov; 24(22):2649-59. PubMed ID: 26414086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.
    Drela K; Lech W; Figiel-Dabrowska A; Zychowicz M; Mikula M; Sarnowska A; Domanska-Janik K
    Cytotherapy; 2016 Apr; 18(4):497-509. PubMed ID: 26971678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells.
    Balasubramanian S; Venugopal P; Sundarraj S; Zakaria Z; Majumdar AS; Ta M
    Cytotherapy; 2012 Jan; 14(1):26-33. PubMed ID: 22091833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord.
    Zajdel A; Kałucka M; Kokoszka-Mikołaj E; Wilczok A
    Acta Biochim Pol; 2017; 64(2):365-369. PubMed ID: 28600911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly.
    Amable PR; Teixeira MV; Carias RB; Granjeiro JM; Borojevic R
    Stem Cell Res Ther; 2014 Apr; 5(2):53. PubMed ID: 24739658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New emerging potentials for human Wharton's jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity.
    Anzalone R; Lo Iacono M; Corrao S; Magno F; Loria T; Cappello F; Zummo G; Farina F; La Rocca G
    Stem Cells Dev; 2010 Apr; 19(4):423-38. PubMed ID: 19958166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic differentiation of Wharton's jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism.
    Beiki B; Zeynali B; Taghiabadi E; Seyedjafari E; Kehtari M
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1032-S1042. PubMed ID: 30449193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton's jelly as sources of cell immunomodulatory therapy.
    Wang Q; Yang Q; Wang Z; Tong H; Ma L; Zhang Y; Shan F; Meng Y; Yuan Z
    Hum Vaccin Immunother; 2016; 12(1):85-96. PubMed ID: 26186552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An
    Aslam N; Abusharieh E; Abuarqoub D; Alhattab D; Jafar H; Alshaer W; Masad RJ; Awidi AS
    Pathol Oncol Res; 2021; 27():584710. PubMed ID: 34257532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Netrin-1 acts as a non-canonical angiogenic factor produced by human Wharton's jelly mesenchymal stem cells (WJ-MSC).
    Prieto CP; Ortiz MC; Villanueva A; Villarroel C; Edwards SS; Elliott M; Lattus J; Aedo S; Meza D; Lois P; Palma V
    Stem Cell Res Ther; 2017 Feb; 8(1):43. PubMed ID: 28241866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.