These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 3177984)

  • 1. A mathematical study of human intracranial hydrodynamics. Part 1--The cerebrospinal fluid pulse pressure.
    Ursino M
    Ann Biomed Eng; 1988; 16(4):379-401. PubMed ID: 3177984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical study of human intracranial hydrodynamics. Part 2--Simulation of clinical tests.
    Ursino M
    Ann Biomed Eng; 1988; 16(4):403-16. PubMed ID: 3177985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis of the principal factors which influence cerebral circulation and intracranial cerebrospinal fluid dynamics].
    Giulioni M; Ursino M; Alvisi C
    Riv Neurol; 1989; 59(2):71-6. PubMed ID: 2672281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer analysis of the main parameters extrapolated from the human intracranial basal artery blood flow.
    Ursino M
    Comput Biomed Res; 1990 Dec; 23(6):542-59. PubMed ID: 2276264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography.
    Greitz D
    Acta Radiol Suppl; 1993; 386():1-23. PubMed ID: 8517189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves.
    Ursino M; Di Giammarco P
    Ann Biomed Eng; 1991; 19(1):15-42. PubMed ID: 2035909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation.
    Portnoy HD; Chopp M; Branch C; Shannon MB
    J Neurosurg; 1982 May; 56(5):666-78. PubMed ID: 7069479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.
    Czosnyka Z; Kim DJ; Balédent O; Schmidt EA; Smielewski P; Czosnyka M
    Acta Neurochir Suppl; 2018; 126():233-236. PubMed ID: 29492567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations among intracranial pulsatility, intracranial hemodynamics, and transcranial Doppler wave form: literature review and hypothesis for future studies.
    Giulioni M; Ursino M; Alvisi C
    Neurosurgery; 1988 May; 22(5):807-12. PubMed ID: 3288898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A non-linear haemodynamic model for the arterial pulsatile component of the intracranial pulse wave.
    Lakin WD; Gross CE
    Neurol Res; 1992 Jun; 14(3):219-25. PubMed ID: 1355272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of systemic and cerebral vascular factors on the cerebrospinal fluid pulse waves.
    Hamer J; Alberti E; Hoyer S; Wiedemann K
    J Neurosurg; 1977 Jan; 46(1):36-45. PubMed ID: 830813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the pulsatile pressure variations in intracranial pressure monitoring.
    Avezaat CJ; van Eijndhoven JH
    Neurosurg Rev; 1986; 9(1-2):113-20. PubMed ID: 3736894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of cerebrovascular circulation: assessment of intracranial hemodynamics during induction of anesthesia.
    Bekker A; Wolk S; Turndorf H; Kristol D; Ritter A
    J Clin Monit; 1996 Nov; 12(6):433-44. PubMed ID: 8982908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.
    Garnotel S; Salmon S; Balédent O
    Acta Neurochir Suppl; 2018; 126():255-259. PubMed ID: 29492571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral hydrodynamics are at a most a third order system.
    Shepherd SJ; Beggs CB
    Med Hypotheses; 2011 May; 76(5):648-52. PubMed ID: 21292407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebrospinal fluid pulse pressure and the pulsatile variation in cerebral blood volume: an experimental study in dogs.
    van Eijndhoven JH; Avezaat CJ
    Neurosurgery; 1986 Oct; 19(4):507-22. PubMed ID: 3097566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental study on artificially induced CSF pulse waveform morphological modifications.
    Anile C; Bonis PD; Ficola A; Santini P; Mangiola A
    Neurol Res; 2011 Dec; 33(10):1072-82. PubMed ID: 22196761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic-mathematical modeling of intracranial pressure (ICP) profiles over a single heart cycle. The fundament of the ICP curve form.
    Domogo AA; Reinstrup P; Ottesen JT
    J Theor Biol; 2023 May; 564():111451. PubMed ID: 36907263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.