These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31779887)

  • 1. Combination of illumination and high resolution NMR spectroscopy: Key features and practical aspects, photochemical applications, and new concepts.
    Nitschke P; Lokesh N; Gschwind RM
    Prog Nucl Magn Reson Spectrosc; 2019; 114-115():86-134. PubMed ID: 31779887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined In Situ Illumination-NMR-UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry.
    Seegerer A; Nitschke P; Gschwind RM
    Angew Chem Int Ed Engl; 2018 Jun; 57(25):7493-7497. PubMed ID: 29573313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LED-illuminated NMR studies of flavin-catalyzed photooxidations reveal solvent control of the electron-transfer mechanism.
    Feldmeier C; Bartling H; Magerl K; Gschwind RM
    Angew Chem Int Ed Engl; 2015 Jan; 54(4):1347-51. PubMed ID: 25470783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LED based NMR illumination device for mechanistic studies on photochemical reactions--versatile and simple, yet surprisingly powerful.
    Feldmeier C; Bartling H; Riedle E; Gschwind RM
    J Magn Reson; 2013 Jul; 232():39-44. PubMed ID: 23685874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sample illumination device facilitates in situ light-coupled NMR spectroscopy without fibre optics.
    Bramham JE; Golovanov AP
    Commun Chem; 2022 Aug; 5(1):90. PubMed ID: 36697806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast X-ray Transient Absorption Spectroscopy of Gas-Phase Photochemical Reactions: A New Universal Probe of Photoinduced Molecular Dynamics.
    Bhattacherjee A; Leone SR
    Acc Chem Res; 2018 Dec; 51(12):3203-3211. PubMed ID: 30462481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Illumination of Nanoliter-NMR Spectroscopy Chips for Real-Time Photochemical Reaction Monitoring.
    Gomez MV; Juan A; Jiménez-Márquez F; de la Hoz A; Velders AH
    Anal Chem; 2018 Feb; 90(3):1542-1546. PubMed ID: 29280614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enamine/Dienamine and Brønsted Acid Catalysis: Elusive Intermediates, Reaction Mechanisms, and Stereoinduction Modes Based on in Situ NMR Spectroscopy and Computational Studies.
    Renzi P; Hioe J; Gschwind RM
    Acc Chem Res; 2017 Dec; 50(12):2936-2948. PubMed ID: 29172479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of a photochromic model system using NMR with ex-situ and in-situ irradiation devices.
    Wolff C; Kind J; Schenderlein H; Bartling H; Feldmeier C; Gschwind RM; Biesalski M; Thiele CM
    Magn Reson Chem; 2016 Jun; 54(6):485-91. PubMed ID: 26891085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of a Photoinduced Dark Catalytic Cycle Using in Situ LED-NMR Spectroscopy.
    Lehnherr D; Ji Y; Neel AJ; Cohen RD; Brunskill APJ; Yang J; Reibarkh M
    J Am Chem Soc; 2018 Oct; 140(42):13843-13853. PubMed ID: 30244565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indigoid Photoswitches: Visible Light Responsive Molecular Tools.
    Petermayer C; Dube H
    Acc Chem Res; 2018 May; 51(5):1153-1163. PubMed ID: 29694014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an in Situ NMR Photoreactor To Study Environmental Photochemistry.
    Bliumkin L; Dutta Majumdar R; Soong R; Adamo A; Abbatt JP; Zhao R; Reiner E; Simpson AJ
    Environ Sci Technol; 2016 Jun; 50(11):5506-16. PubMed ID: 27172272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting a new source for photochemically induced dynamic nuclear polarization in the LOV2 domain of phototropin by magnetic-field dependent (13)C NMR spectroscopy.
    Kothe G; Lukaschek M; Link G; Kacprzak S; Illarionov B; Fischer M; Eisenreich W; Bacher A; Weber S
    J Phys Chem B; 2014 Oct; 118(40):11622-32. PubMed ID: 25207844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LED-NMR Monitoring of an Enantioselective Catalytic [2+2] Photocycloaddition.
    Skubi KL; Swords WB; Hofstetter H; Yoon TP
    ChemPhotoChem; 2020 Sep; 4(9):685-690. PubMed ID: 34532566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments.
    Sai Sankar Gupta KB; Daviso E; Jeschke G; Alia A; Ernst M; Matysik J
    J Magn Reson; 2014 Sep; 246():9-17. PubMed ID: 25063951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From single to multiple microcoil flow probe NMR and related capillary techniques: a review.
    Gökay O; Albert K
    Anal Bioanal Chem; 2012 Jan; 402(2):647-69. PubMed ID: 21969176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of an NMR probe for monitoring of photoreactions.
    Paululat T; Rabe M; Berdnikova DV
    J Magn Reson; 2021 Jun; 327():106990. PubMed ID: 33932912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Exchange Saturation Transfer in Chemical Reactions: A Mechanistic Tool for NMR Detection and Characterization of Transient Intermediates.
    Lokesh N; Seegerer A; Hioe J; Gschwind RM
    J Am Chem Soc; 2018 Feb; 140(5):1855-1862. PubMed ID: 29336150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass Spectrometry-Based Fast Photochemical Oxidation of Proteins (FPOP) for Higher Order Structure Characterization.
    Li KS; Shi L; Gross ML
    Acc Chem Res; 2018 Mar; 51(3):736-744. PubMed ID: 29450991
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.