BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31780122)

  • 1. Do gait and muscle activation patterns change at middle-age during split-belt adaptation?
    Vervoort D; den Otter AR; Buurke TJW; Vuillerme N; Hortobágyi T; Lamoth CJC
    J Biomech; 2020 Jan; 99():109510. PubMed ID: 31780122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased intramuscular coherence is associated with temporal gait symmetry during split-belt locomotor adaptation.
    Sato S; Choi JT
    J Neurophysiol; 2019 Sep; 122(3):1097-1109. PubMed ID: 31339832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leg muscle activation during gait in Parkinson's disease: adaptation and interlimb coordination.
    Dietz V; Zijlstra W; Prokop T; Berger W
    Electroencephalogr Clin Neurophysiol; 1995 Dec; 97(6):408-15. PubMed ID: 8536593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of adaptation during prolonged split-belt locomotion in the intact and spinal cat.
    Kuczynski V; Telonio A; Thibaudier Y; Hurteau MF; Dambreville C; Desrochers E; Doelman A; Ross D; Frigon A
    J Physiol; 2017 Sep; 595(17):5987-6006. PubMed ID: 28643899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Step length symmetry adaptation to split-belt treadmill walking after acquired non-traumatic transtibial amputation.
    Kline PW; Murray AM; Miller MJ; So N; Fields T; Christiansen CL
    Gait Posture; 2020 Jul; 80():162-167. PubMed ID: 32516682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-series changes in intramuscular coherence associated with split-belt treadmill adaptation in humans.
    Oshima A; Wakahara T; Nakamura Y; Tsujiuchi N; Kamibayashi K
    Exp Brain Res; 2021 Jul; 239(7):2127-2139. PubMed ID: 33961075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of Muscle Synergies in Lower-Limb Muscles Associated With Split-Belt Locomotor Adaptation.
    Oshima A; Nakamura Y; Kamibayashi K
    Front Hum Neurosci; 2022; 16():852530. PubMed ID: 35845245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Aging and Task Prioritization on Split-Belt Gait Adaptation.
    Vervoort D; den Otter AR; Buurke TJW; Vuillerme N; Hortobágyi T; Lamoth CJC
    Front Aging Neurosci; 2019; 11():10. PubMed ID: 30760998
    [No Abstract]   [Full Text] [Related]  

  • 9. Predictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans.
    Ogawa T; Kawashima N; Ogata T; Nakazawa K
    J Neurophysiol; 2014 Feb; 111(4):722-32. PubMed ID: 24225544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle activation patterns are bilaterally linked during split-belt treadmill walking in humans.
    Maclellan MJ; Ivanenko YP; Massaad F; Bruijn SM; Duysens J; Lacquaniti F
    J Neurophysiol; 2014 Apr; 111(8):1541-52. PubMed ID: 24478155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle contributions to center of mass acceleration adapt to asymmetric walking in healthy subjects.
    Jansen K; De Groote F; Duysens J; Jonkers I
    Gait Posture; 2013 Sep; 38(4):739-44. PubMed ID: 23597940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adapting gait with asymmetric visual feedback affects deadaptation but not adaptation in healthy young adults.
    Brinkerhoff SA; Monaghan PG; Roper JA
    PLoS One; 2021; 16(2):e0247706. PubMed ID: 33630934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor adaptation and locomotor adaptive learning in Parkinson's disease and normal aging.
    Roemmich RT; Nocera JR; Stegemöller EL; Hassan A; Okun MS; Hass CJ
    Clin Neurophysiol; 2014 Feb; 125(2):313-9. PubMed ID: 23916406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of dual-tasking on temporal gait adaptation and de-adaptation to the split-belt treadmill in older adults.
    Conradsson D; Hinton DC; Paquette C
    Exp Gerontol; 2019 Oct; 125():110655. PubMed ID: 31299212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke.
    Reisman DS; Wityk R; Silver K; Bastian AJ
    Brain; 2007 Jul; 130(Pt 7):1861-72. PubMed ID: 17405765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion.
    Forbes PA; Vlutters M; Dakin CJ; van der Kooij H; Blouin JS; Schouten AC
    J Physiol; 2017 Mar; 595(6):2175-2195. PubMed ID: 28008621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. More symmetrical gait after split-belt treadmill walking does not modify dynamic and postural balance in individuals post-stroke.
    Miéville C; Lauzière S; Betschart M; Nadeau S; Duclos C
    J Electromyogr Kinesiol; 2018 Aug; 41():41-49. PubMed ID: 29747067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.