BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31780123)

  • 1. The effects of upper airway tissue motion on airflow dynamics.
    Zhao Y; Raco J; Kourmatzis A; Diasinos S; Chan HK; Yang R; Cheng S
    J Biomech; 2020 Jan; 99():109506. PubMed ID: 31780123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging.
    Bates AJ; Schuh A; Amine-Eddine G; McConnell K; Loew W; Fleck RJ; Woods JC; Dumoulin CL; Amin RS
    Clin Biomech (Bristol, Avon); 2019 Jun; 66():88-96. PubMed ID: 29079097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of respiratory rate on the fluid mechanics of a reconstructed upper airway.
    Burchell C; Kourmatzis A; Zhao Y; Raco J; Mekonnen T; Chan HK; Cheng S
    Med Eng Phys; 2022 Feb; 100():103746. PubMed ID: 35144732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating the effect of individual upper airway anatomical features on drug deposition.
    Ma Z; Kourmatzis A; Milton-McGurk L; Chan HK; Farina D; Cheng S
    Int J Pharm; 2022 Nov; 628():122219. PubMed ID: 36179925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations.
    Xu X; Wu J; Weng W; Fu M
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1679-1695. PubMed ID: 32026145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional flow and deposition variability in adult female lungs: A numerical simulation pilot study.
    Poorbahrami K; Oakes JM
    Clin Biomech (Bristol, Avon); 2019 Jun; 66():40-49. PubMed ID: 29395490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obstructions in the lower airways lead to altered airflow patterns in the central airway.
    Hariprasad DS; Sul B; Liu C; Kiger KT; Altes T; Ruppert K; Reifman J; Wallqvist A
    Respir Physiol Neurobiol; 2020 Jan; 272():103311. PubMed ID: 31585172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow.
    Gunatilaka CC; Schuh A; Higano NS; Woods JC; Bates AJ
    Comput Biol Med; 2020 Dec; 127():104099. PubMed ID: 33152667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realistic glottal motion and airflow rate during human breathing.
    Scheinherr A; Bailly L; Boiron O; Lagier A; Legou T; Pichelin M; Caillibotte G; Giovanni A
    Med Eng Phys; 2015 Sep; 37(9):829-39. PubMed ID: 26159687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow visualization through particle image velocimetry in realistic model of rhesus monkey's upper airway.
    Kim JW; Phuong NL; Aramaki SI; Ito K
    Respir Physiol Neurobiol; 2018 May; 251():16-27. PubMed ID: 29438809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CFD analysis of the flow structure in a monkey upper airway validated by PIV experiments.
    Phuong NL; Quang TV; Khoa ND; Kim JW; Ito K
    Respir Physiol Neurobiol; 2020 Jan; 271():103304. PubMed ID: 31546025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro.
    Sul B; Oppito Z; Jayasekera S; Vanger B; Zeller A; Morris M; Ruppert K; Altes T; Rakesh V; Day S; Robinson R; Reifman J; Wallqvist A
    J Biomech Eng; 2018 May; 140(5):. PubMed ID: 29305603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model.
    Xu XY; Ni SJ; Fu M; Zheng X; Luo N; Weng WG
    J Therm Biol; 2017 Dec; 70(Pt A):53-63. PubMed ID: 29074026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns.
    Kadota K; Inoue N; Matsunaga Y; Takemiya T; Kubo K; Imano H; Uchiyama H; Tozuka Y
    J Pharm Pharmacol; 2020 Jan; 72(1):17-28. PubMed ID: 31713883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airflow behavior changes in upper airway caused by different head and neck positions: Comparison by computational fluid dynamics.
    Wei W; Huang SW; Chen LH; Qi Y; Qiu YM; Li ST
    J Biomech; 2017 Feb; 52():89-94. PubMed ID: 28062122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of realistic and idealized breathing patterns in computational models of airflow and vapor dosimetry in the rodent upper respiratory tract.
    Colby SM; Kabilan S; Jacob RE; Kuprat AP; Einstein DR; Corley RA
    Inhal Toxicol; 2016; 28(4):192-202. PubMed ID: 26986954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows.
    Fishler R; Mulligan MK; Sznitman J
    J Biomech; 2013 Nov; 46(16):2817-23. PubMed ID: 24090494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow and particle dispersion in a pulmonary alveolus--part I: velocity measurements and convective particle transport.
    Chhabra S; Prasad AK
    J Biomech Eng; 2010 May; 132(5):051009. PubMed ID: 20459210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry.
    Oakes JM; Day S; Weinstein SJ; Robinson RJ
    J Biomech Eng; 2010 Feb; 132(2):021008. PubMed ID: 20370245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement of the tongue during normal breathing in awake healthy humans.
    Cheng S; Butler JE; Gandevia SC; Bilston LE
    J Physiol; 2008 Sep; 586(17):4283-94. PubMed ID: 18635645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.