BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 31780168)

  • 21. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions.
    Huang J; Ji F
    Int J Biometeorol; 2015 Jul; 59(7):877-88. PubMed ID: 25240389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defining Optimal Soybean Sowing Dates across the US.
    Mourtzinis S; Specht JE; Conley SP
    Sci Rep; 2019 Feb; 9(1):2800. PubMed ID: 30808953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing cultivars and agricultural management practices can enhance soybean yield in Northeast China.
    Guo S; Zhang Z; Zhang F; Yang X
    Sci Total Environ; 2023 Jan; 857(Pt 2):159456. PubMed ID: 36257418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the impact of climate variability on maize using simulation modeling under semi-arid environment of Punjab, Pakistan.
    Ahmed I; Ur Rahman MH; Ahmed S; Hussain J; Ullah A; Judge J
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28413-28430. PubMed ID: 30083905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Land surface phenology of Northeast China during 2000-2015: temporal changes and relationships with climate changes.
    Zhang Y; Li L; Wang H; Zhang Y; Wang N; Chen J
    Environ Monit Assess; 2017 Oct; 189(11):531. PubMed ID: 28965264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Agricultural practice contributed more to changes in soybean yield than climate change from 1981 to 2010 in northeast China.
    Zhang J; Liu Y; Dai L
    J Sci Food Agric; 2022 Apr; 102(6):2387-2395. PubMed ID: 34628663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The optimization of wheat yield through adaptive crop management in a changing climate: evidence from China.
    Liu Y; Zhang J; Ge Q
    J Sci Food Agric; 2021 Jul; 101(9):3644-3653. PubMed ID: 33275287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global crop yields can be lifted by timely adaptation of growing periods to climate change.
    Minoli S; Jägermeyr J; Asseng S; Urfels A; Müller C
    Nat Commun; 2022 Nov; 13(1):7079. PubMed ID: 36400762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Impacts of future climate change on spring phenology stages of rubber tree in Hainan, China].
    Li N; Bai R; Wu L; Li W; Chen M; Chen X; Fan CH; Yang GS
    Ying Yong Sheng Tai Xue Bao; 2020 Apr; 31(4):1241-1249. PubMed ID: 32530199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining Simple Phenotyping and Photothermal Algorithm for the Prediction of Soybean Phenology: Application to a Range of Common Cultivars Grown in Europe.
    Schoving C; Stöckle CO; Colombet C; Champolivier L; Debaeke P; Maury P
    Front Plant Sci; 2019; 10():1755. PubMed ID: 32063913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenology and Seed Yield Performance of Determinate Soybean Cultivars Grown at Elevated Temperatures in a Temperate Region.
    Choi DH; Ban HY; Seo BS; Lee KJ; Lee BW
    PLoS One; 2016; 11(11):e0165977. PubMed ID: 27812185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models.
    Yasin M; Ahmad A; Khaliq T; Habib-Ur-Rahman M; Niaz S; Gaiser T; Ghafoor I; Hassan HSU; Qasim M; Hoogenboom G
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):18967-18988. PubMed ID: 34705205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate trends and soybean production since 1970 in Mississippi: Empirical evidence from ARDL model.
    Sharma RK; Dhillon J; Kumar P; Mulvaney MJ; Reed V; Bheemanahalli R; Cox MS; Kukal MS; Reddy KN
    Sci Total Environ; 2023 Dec; 905():167046. PubMed ID: 37714355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation study of past climate change effect on chickpea phenology at different sowing dates in Gorgan, Iran.
    Gholipoor M; Shahsavani S
    Pak J Biol Sci; 2008 Jun; 11(12):1561-8. PubMed ID: 18819642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency.
    Luo Q; O'Leary G; Cleverly J; Eamus D
    Int J Biometeorol; 2018 Jun; 62(6):1049-1061. PubMed ID: 29423733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Phenological responses of apple tree to climate warming in the main apple production areas in northern China].
    Liu L; Guo L; Wang JH; Luan Q; Fu WD; Li MH
    Ying Yong Sheng Tai Xue Bao; 2020 Mar; 31(3):845-852. PubMed ID: 32537980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amphibian breeding phenology trends under climate change: predicting the past to forecast the future.
    Green DM
    Glob Chang Biol; 2017 Feb; 23(2):646-656. PubMed ID: 27273300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis.
    Cong N; Wang T; Nan H; Ma Y; Wang X; Myneni RB; Piao S
    Glob Chang Biol; 2013 Mar; 19(3):881-91. PubMed ID: 23504844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Urban spring phenology in the middle temperate zone of China: dynamics and influence factors.
    Liang S; Shi P; Li H
    Int J Biometeorol; 2016 Apr; 60(4):531-44. PubMed ID: 26272052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.