These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31780433)

  • 1. An Efficient Timer and Sizer of Biomacromolecular Motions.
    Chan J; Takemura K; Lin HR; Chang KC; Chang YY; Joti Y; Kitao A; Yang LW
    Structure; 2020 Feb; 28(2):259-269.e8. PubMed ID: 31780433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Close correspondence between the motions from principal component analysis of multiple HIV-1 protease structures and elastic network modes.
    Yang L; Song G; Carriquiry A; Jernigan RL
    Structure; 2008 Feb; 16(2):321-30. PubMed ID: 18275822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic network models capture the motions apparent within ensembles of RNA structures.
    Zimmermann MT; Jernigan RL
    RNA; 2014 Jun; 20(6):792-804. PubMed ID: 24759093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distance matrix-based approach to protein structure prediction.
    Kloczkowski A; Jernigan RL; Wu Z; Song G; Yang L; Kolinski A; Pokarowski P
    J Struct Funct Genomics; 2009 Mar; 10(1):67-81. PubMed ID: 19224393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining coarse-grained representations of large biomolecules and biomolecular complexes from elastic network models.
    Zhang Z; Pfaendtner J; Grafmüller A; Voth GA
    Biophys J; 2009 Oct; 97(8):2327-37. PubMed ID: 19843465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic study of anharmonic features in a principal component analysis of gramicidin A.
    Kurylowicz M; Yu CH; Pomès R
    Biophys J; 2010 Feb; 98(3):386-95. PubMed ID: 20141751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of rigid motions on elastic network model force constants.
    Lezon TR
    Proteins; 2012 Apr; 80(4):1133-42. PubMed ID: 22228562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of motions in membrane proteins by elastic network models and their experimental validation.
    Isin B; Tirupula KC; Oltvai ZN; Klein-Seetharaman J; Bahar I
    Methods Mol Biol; 2012; 914():285-317. PubMed ID: 22976035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations.
    Bahar I; Erman B; Haliloglu T; Jernigan RL
    Biochemistry; 1997 Nov; 36(44):13512-23. PubMed ID: 9354619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full correlation analysis of conformational protein dynamics.
    Lange OF; Grubmüller H
    Proteins; 2008 Mar; 70(4):1294-312. PubMed ID: 17876828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Real-Valued Protein Residue Fluctuation Using FlexPred.
    Peterson L; Jamroz M; Kolinski A; Kihara D
    Methods Mol Biol; 2017; 1484():175-186. PubMed ID: 27787827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational changes and allosteric communications in human serum albumin due to ligand binding.
    Ahalawat N; Murarka RK
    J Biomol Struct Dyn; 2015; 33(10):2192-204. PubMed ID: 25495718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An enhanced elastic network model to represent the motions of domain-swapped proteins.
    Song G; Jernigan RL
    Proteins; 2006 Apr; 63(1):197-209. PubMed ID: 16447281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into equilibrium dynamics of proteins from comparison of NMR and X-ray data with computational predictions.
    Yang LW; Eyal E; Chennubhotla C; Jee J; Gronenborn AM; Bahar I
    Structure; 2007 Jun; 15(6):741-9. PubMed ID: 17562320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Conformational Sampling of Collective Motions of Proteins with Principal Component Analysis-Based Parallel Cascade Selection Molecular Dynamics.
    Yasuda T; Shigeta Y; Harada R
    J Chem Inf Model; 2020 Aug; 60(8):4021-4029. PubMed ID: 32786508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons of Protein Dynamics from Experimental Structure Ensembles, Molecular Dynamics Ensembles, and Coarse-Grained Elastic Network Models.
    Sankar K; Mishra SK; Jernigan RL
    J Phys Chem B; 2018 May; 122(21):5409-5417. PubMed ID: 29376347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective harmonic potentials: insights into the internal cooperativity and sequence-specificity of protein dynamics.
    Dehouck Y; Mikhailov AS
    PLoS Comput Biol; 2013; 9(8):e1003209. PubMed ID: 24009495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations and elastic network analysis of protein kinase B (Akt/PKB) inactivation.
    Cheng S; Niv MY
    J Chem Inf Model; 2010 Sep; 50(9):1602-10. PubMed ID: 20735046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein elastic network models and the ranges of cooperativity.
    Yang L; Song G; Jernigan RL
    Proc Natl Acad Sci U S A; 2009 Jul; 106(30):12347-52. PubMed ID: 19617554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Structural Dynamics of Engineered β-Lactamases Vary Broadly on Three Timescales yet Sustain Native Function.
    Gobeil SMC; Ebert MCCJC; Park J; Gagné D; Doucet N; Berghuis AM; Pleiss J; Pelletier JN
    Sci Rep; 2019 Apr; 9(1):6656. PubMed ID: 31040324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.