These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 31780697)
21. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Funamoto K; Zervantonakis IK; Liu Y; Ochs CJ; Kim C; Kamm RD Lab Chip; 2012 Nov; 12(22):4855-63. PubMed ID: 23023115 [TBL] [Abstract][Full Text] [Related]
22. A novel individual-cell-based mathematical model based on multicellular tumour spheroids for evaluating doxorubicin-related delivery in avascular regions. Liu J; Yan F; Chen H; Wang W; Liu W; Hao K; Wang G; Zhou F; Zhang J Br J Pharmacol; 2017 Sep; 174(17):2862-2879. PubMed ID: 28608595 [TBL] [Abstract][Full Text] [Related]
23. Inhibition of P-glycoprotein function by XR9576 in a solid tumour model can restore anticancer drug efficacy. Walker J; Martin C; Callaghan R Eur J Cancer; 2004 Mar; 40(4):594-605. PubMed ID: 14962729 [TBL] [Abstract][Full Text] [Related]
24. High throughput microfluidic system with multiple oxygen levels for the study of hypoxia in tumor spheroids. Berger Fridman I; Ugolini GS; VanDelinder V; Cohen S; Konry T Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33440359 [TBL] [Abstract][Full Text] [Related]
25. Time-resolved non-invasive metabolomic monitoring of a single cancer spheroid by microfluidic NMR. Patra B; Sharma M; Hale W; Utz M Sci Rep; 2021 Jan; 11(1):53. PubMed ID: 33420162 [TBL] [Abstract][Full Text] [Related]
26. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Chen MC; Gupta M; Cheung KC Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849 [TBL] [Abstract][Full Text] [Related]
27. Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Ma HL; Jiang Q; Han S; Wu Y; Cui Tomshine J; Wang D; Gan Y; Zou G; Liang XJ Mol Imaging; 2012; 11(6):487-98. PubMed ID: 23084249 [TBL] [Abstract][Full Text] [Related]
28. Formation of size-controllable tumour spheroids using a microfluidic pillar array (μFPA) device. Lim W; Hoang HH; You D; Han J; Lee JE; Kim S; Park S Analyst; 2018 Nov; 143(23):5841-5848. PubMed ID: 30379148 [TBL] [Abstract][Full Text] [Related]
29. A multicellular spheroid formation and extraction chip using removable cell trapping barriers. Jin HJ; Cho YH; Gu JM; Kim J; Oh YS Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070 [TBL] [Abstract][Full Text] [Related]
30. Multi-size spheroid formation using microfluidic funnels. Marimuthu M; Rousset N; St-Georges-Robillard A; Lateef MA; Ferland M; Mes-Masson AM; Gervais T Lab Chip; 2018 Jan; 18(2):304-314. PubMed ID: 29211088 [TBL] [Abstract][Full Text] [Related]
31. Measure and characterization of the forces exerted by growing multicellular spheroids using microdevice arrays. Aoun L; Larnier S; Weiss P; Cazales M; Herbulot A; Ducommun B; Vieu C; Lobjois V PLoS One; 2019; 14(5):e0217227. PubMed ID: 31120960 [TBL] [Abstract][Full Text] [Related]
32. Role of intercellular communications in breast cancer multicellular tumor spheroids after chemotherapy. Oktem G; Bilir A; Ayla S; Yavasoglu A; Goksel G; Saydam G; Uysal A Oncol Res; 2006; 16(5):225-33. PubMed ID: 17294803 [TBL] [Abstract][Full Text] [Related]
33. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Ruppen J; Cortes-Dericks L; Marconi E; Karoubi G; Schmid RA; Peng R; Marti TM; Guenat OT Lab Chip; 2014 Mar; 14(6):1198-205. PubMed ID: 24496222 [TBL] [Abstract][Full Text] [Related]
34. An agent-based model for drug-radiation interactions in the tumour microenvironment: Hypoxia-activated prodrug SN30000 in multicellular tumour spheroids. Mao X; McManaway S; Jaiswal JK; Patel PB; Wilson WR; Hicks KO; Bogle G PLoS Comput Biol; 2018 Oct; 14(10):e1006469. PubMed ID: 30356233 [TBL] [Abstract][Full Text] [Related]
35. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment. Holton AB; Sinatra FL; Kreahling J; Conway AJ; Landis DA; Altiok S PLoS One; 2017; 12(1):e0169797. PubMed ID: 28085924 [TBL] [Abstract][Full Text] [Related]
36. Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Ruppen J; Wildhaber FD; Strub C; Hall SR; Schmid RA; Geiser T; Guenat OT Lab Chip; 2015 Jul; 15(14):3076-85. PubMed ID: 26088102 [TBL] [Abstract][Full Text] [Related]
37. Accumulation and distribution of doxorubicin in tumour spheroids: the influence of acidity and expression of P-glycoprotein. Mellor HR; Callaghan R Cancer Chemother Pharmacol; 2011 Nov; 68(5):1179-90. PubMed ID: 21400240 [TBL] [Abstract][Full Text] [Related]
38. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform. Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449 [TBL] [Abstract][Full Text] [Related]
39. Distinctive alterations of invasiveness, drug resistance and cell-cell organization in 3D-cultures of MCF-7, a human breast cancer cell line, and its multidrug resistant variant. dit Faute MA; Laurent L; Ploton D; Poupon MF; Jardillier JC; Bobichon H Clin Exp Metastasis; 2002; 19(2):161-8. PubMed ID: 11964080 [TBL] [Abstract][Full Text] [Related]
40. Establishment of Microfluidic Spheroid Cultures for Biomedical Applications. Kwapiszewska K Methods Mol Biol; 2018; 1771():213-224. PubMed ID: 29633216 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]