These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Comparison of weighted and unweighted network analysis in the case of a pig trade network in Northern Germany. Büttner K; Krieter J Prev Vet Med; 2018 Aug; 156():49-57. PubMed ID: 29891145 [TBL] [Abstract][Full Text] [Related]
4. Range-limited centrality measures in complex networks. Ercsey-Ravasz M; Lichtenwalter RN; Chawla NV; Toroczkai Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066103. PubMed ID: 23005158 [TBL] [Abstract][Full Text] [Related]
5. Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping. Kitsak M; Ganin A; Elmokashfi A; Cui H; Eisenberg DA; Alderson DL; Korkin D; Linkov I Nat Commun; 2023 Jan; 14(1):186. PubMed ID: 36650144 [TBL] [Abstract][Full Text] [Related]
6. Centrality and the shortest path approach in the human interactome. Rubanova N; Morozova N J Bioinform Comput Biol; 2019 Aug; 17(4):1950027. PubMed ID: 31617463 [TBL] [Abstract][Full Text] [Related]
7. Estimation and update of betweenness centrality with progressive algorithm and shortest paths approximation. Xiang N; Wang Q; You M Sci Rep; 2023 Oct; 13(1):17110. PubMed ID: 37816806 [TBL] [Abstract][Full Text] [Related]
8. A Fast Algorithm for All-Pairs-Shortest-Paths Suitable for Neural Networks. Jing Z; Meister M Neural Comput; 2024 Nov; 36(12):2710-2733. PubMed ID: 39383024 [TBL] [Abstract][Full Text] [Related]
9. A fast algorithm for All-Pairs-Shortest-Paths suitable for neural networks. Jing Z; Meister M ArXiv; 2024 Jul; ():. PubMed ID: 39108292 [TBL] [Abstract][Full Text] [Related]
10. Shortest path counting in probabilistic biological networks. Ren Y; Ay A; Kahveci T BMC Bioinformatics; 2018 Dec; 19(1):465. PubMed ID: 30514202 [TBL] [Abstract][Full Text] [Related]
11. Shortest path based network analysis to characterize cognitive load states of human brain using EEG based functional brain networks. Thilaga M; Ramasamy V; Nadarajan R; Nandagopal D J Integr Neurosci; 2018; 17(2):133-148. PubMed ID: 28968248 [TBL] [Abstract][Full Text] [Related]
12. Shortest Paths in Multiplex Networks. Ghariblou S; Salehi M; Magnani M; Jalili M Sci Rep; 2017 May; 7(1):2142. PubMed ID: 28526822 [TBL] [Abstract][Full Text] [Related]
13. Two betweenness centrality measures based on Randomized Shortest Paths. Kivimäki I; Lebichot B; Saramäki J; Saerens M Sci Rep; 2016 Feb; 6():19668. PubMed ID: 26838176 [TBL] [Abstract][Full Text] [Related]
14. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Carroll C; McRae BH; Brookes A Conserv Biol; 2012 Feb; 26(1):78-87. PubMed ID: 22010832 [TBL] [Abstract][Full Text] [Related]
15. A spatial interaction incorporated betweenness centrality measure. Wu X; Cao W; Wang J; Zhang Y; Yang W; Liu Y PLoS One; 2022; 17(5):e0268203. PubMed ID: 35594259 [TBL] [Abstract][Full Text] [Related]
16. A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks. Qiao T; Shan W; Yu G; Liu C Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265352 [TBL] [Abstract][Full Text] [Related]
17. The gravity of an edge. Helander ME; McAllister S Appl Netw Sci; 2018; 3(1):7. PubMed ID: 30839803 [TBL] [Abstract][Full Text] [Related]
18. Simulating SIR processes on networks using weighted shortest paths. Tolić D; Kleineberg KK; Antulov-Fantulin N Sci Rep; 2018 Apr; 8(1):6562. PubMed ID: 29700314 [TBL] [Abstract][Full Text] [Related]
19. A bag-of-paths framework for network data analysis. Françoisse K; Kivimäki I; Mantrach A; Rossi F; Saerens M Neural Netw; 2017 Jun; 90():90-111. PubMed ID: 28458082 [TBL] [Abstract][Full Text] [Related]
20. The ultrametric backbone is the union of all minimum spanning forests. Rozum JC; Rocha LM J Phys Complex; 2024 Sep; 5(3):035009. PubMed ID: 39131403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]